G3NN
This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper:
A Flexible Generative Framework for Graph-based Semi-supervised Learning
Jiaqi Ma*, Weijing Tang*, Ji Zhu, and Qiaozhu Mei. NeurIPS 2019.
(*: equal contribution)
Requirements
See environment.yml
. Run conda torch_env create -f environment.yml
to install the required packages.
Run the code
Example: python main.py --model lsm_gcn --dataset cora
Cite
@inproceedings{ma2019flexible,
title={A Flexible Generative Framework for Graph-based Semi-supervised Learning},
author={Ma, Jiaqi and Tang, Weijing and Zhu, Ji and Mei, Qiaozhu},
booktitle={Advances in Neural Information Processing Systems},
pages={3276--3285},
year={2019}
}