Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

Overview

ModelNet-C

Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com/view/modelnetc/home

Benchmarking and Analyzing Point Cloud Classification under Corruptions
Jiawei Ren, Liang Pan, Ziwei Liu

arXiv 2022

corruptions

ModelNet-C [Download Link]

Get Started

Step 0. Clone the Repo

git clone https://github.com/jiawei-ren/ModelNet-C.git
cd ModelNet-C

Step 1. Set Up the Environment

Set up the environment by:

conda create --name modelnetc python=3.7.5
conda activate modelnetc
pip install -r requirements.txt
cd SimpleView/pointnet2_pyt && pip install -e . && cd -
pip install -e modelnetc_utils

Step 2. Prepare Data

Download ModelNet-C by:

cd data
gdown https://drive.google.com/uc?id=1KE6MmXMtfu_mgxg4qLPdEwVD5As8B0rm
unzip modelnet_c.zip && cd ..

Alternatively, you may download ModelNet40-C manually and extract it under data.

Step 3. Download Pretrained Models

Download pretrained models by

gdown https://drive.google.com/uc?id=11RONLZGg0ezxC16n57PiEZouqC5L0b_h
unzip pretrained_models.zip

Alternatively, you may download pretrained models manually and extract it under root directory.

Benchmark on ModelNet-C

Evaluation Commands

Evaluation commands are provided in EVALUATE.md.

Benchmark Results

Method Reference Standalone mCE Clean OA
DGCNN Wang et al. Yes 1.000 0.926
PointNet Qi et al. Yes 1.422 0.907
PointNet++ Qi et al. Yes 1.072 0.930
RSCNN Liu et al. Yes 1.130 0.923
SimpleView Goyal et al. Yes 1.047 0.939
GDANet Xu et al. Yes 0.892 0.934
CurveNet Xiang et al. Yes 0.927 0.938
PAConv Xu et al. Yes 1.104 0.936
PCT Guo et al. Yes 0.925 0.930
RPC Ren et al. Yes 0.863 0.930
DGCNN+PointWOLF Kim et al. No 0.814 0.926
DGCNN+RSMix Lee et al. No 0.745 0.930
DGCNN+WOLFMix Ren et al. No 0.590 0.932
GDANet+WOLFMix Ren et al. No 0.571 0.934

*Standalone indicates if the method is a standalone architecture or a combination with augmentation or pretrain.

Todos

  • PointMixup
  • OcCo
  • PointBERT

Cite ModelNet-C

@article{
    ren2022modelnetc,
    title={Benchmarking and Analyzing Point Cloud Classification under Corruptions},
    author={Jiawei Ren and Liang Pan and Ziwei Liu},
    journal={arXiv:2202.03377},
    year={2022},
}

Acknowledgement

This codebase heavily borrows codes from the following repositories:

You might also like...
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Code for our CVPR 2021 paper
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 6, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

null 73 Nov 6, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 9, 2021
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 8, 2023
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python>=3.7 pytorch>=1.6.0 torchvision>=0.8

Yunfan Li 210 Dec 30, 2022