Autoencoder - Reducing the Dimensionality of Data with Neural Network

Overview

autoencoder

Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper.

Notes

Aim to minimise the squared reconstruction error using backpropagation.

If the neuron activation functions are linear, it will learn a compact encoding in the hidden units that is a linear function of the data. Exactly the same result as PCA (but probably less efficient). The M hidden units will span the same space as the first M components of PCA, but they may not be orthogonal.

If the activation functions are non-linear, it's able to represent data on a non-linear manifold – more powerful than PCA.

Deep Autoencoders

Learning time is linear (or better) in the number of training cases.

MNIST Digits

Network

Encoding: 784 (pixels) -> 1000 -> 500 -> 250 -> 30 linear units [central code layer]

Decoding: 30 linear units -> 250 -> 500 -> 1000 -> 784 pixel [reconstruction]

First trained by stacking RBMs to get the 30 hidden units. Transpose of those weights used for decoding. Then fine-tune with backprop with cross-entropy error.

MNIST digits are continuous valued [0,1] and very non-Gaussian. RBM units pre-trained as follows:

First layer (784 <-> 1000 units):

  • hidden units are binary (bernoulli with activation probability given by logistic).
  • visible units are linear with Gaussian noise

Second layer (1000 <-> 500 units) and third layer (500 <-> 250):

  • hidden units are binary (bernoulli using probability of 1 given by logistic).
  • visible units are continuous (activation probabilities of the hidden units in the preceding layer.

Top layer (250 <-> 30):

  • hidden units have stochastic real-values states drawn form a unit variance Gaussian whose mean was is determined by the input from the that RBM's logistic visible units.

For fine-tuning, the model is "unfolded" and stochastic activities are are replaced by deterministic real-valued probabilties. Top layer is a linear, every other layer is logistic.

Resources

You might also like...
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

Clockwork Variational Autoencoder
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Owner
Jordan Burgess
Jordan Burgess
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-based API design, PyKale enforces standardization and minimalism, via reusing existing resources, reducing repetitions and redundancy, and recycling learning models across areas.

PyKale 370 Dec 27, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 1, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 5, 2023
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self-supervised learning losses.

NAVER 105 Dec 28, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

null 11 Nov 15, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022