Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

Related tags

Deep Learning DSBF
Overview

DSBF

Introduction

This repository contains the implementation code for paper:

Domain-Specific Bias Filtering for Single Labeled Domain Generalization

Junkun Yuan, Xu Ma, Defang Chen, Kun Kuang, Fei Wu, Lanfen Lin

arXiv preprint, 2021

[arXiv]

Brief Abstract for the Paper


Domain generalization (DG) utilizes multiple labeled source datasets to train a generalizable model for unseen target domains. However, due to expensive annotation costs, the requirements of labeling all the source data are hard to be met in real-world applications.

We investigate a Single Labeled Domain Generalization (SLDG) task with only one source domain being labeled, which is more practical and challenging than the Conventional Domain Generalization (CDG). A major obstacle in the SLDG task is the discriminability-generalization bias: discriminative information in the labeled source dataset may contain domain-specific bias, constraining the generalization of the trained model.

To tackle this challenging task, we propose Domain-Specific Bias Filtering (DSBF), which initializes a discriminative model with the labeled source data and filters out its domain-specific bias with the unlabeled source data for generalization improvement. We divide the filtering process into: (1) Feature extractor debiasing using k-means clustering-based semantic feature re-extraction; and (2) Classifier calibrating using attention-guided semantic feature projection.

Requirements

You may need to build suitable Python environment by installing the following packages (Anaconda is recommended).

  • python 3.6
  • pytorch 1.7.1 (with cuda 11.0 and cudnn 8.0)
  • torchvision 0.8.2
  • tensorboardx 2.1
  • numpy 1.19

Data Preparation

We list the adopted datasets in the following.

Datasets Download link
PACS [1] https://dali-dl.github.io/project_iccv2017.html
Office-Home [2] https://www.hemanthdv.org/officeHomeDataset.html

Please note:

  • Although these datasets are open-sourced, you may need to have permission to use the datasets under the datasets' license.
  • If you're a dataset owner and do not want your dataset to be included here, please get in touch with us via a GitHub issue. Thanks!

Usage

  1. Prepare the datasets.
  2. Update the .txt files under folder "DSBF/dataset/pthList/" with your dataset path.
  3. Run the code with command:
nohup sh run.sh > run.txt 2>&1 &
  1. Check results in DSBF/dataset-task-target-data.txt.

Citation

If you find our code or idea useful for your research, please cite our work.

@article{yuan2021domain,
  title={Domain-Specific Bias Filtering for Single Labeled Domain Generalization},
  author={Yuan, Junkun and Ma, Xu and Chen, Defang and Kuang, Kun and Wu, Fei and Lin, Lanfen},
  journal={arXiv preprint arXiv:2110.00726},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected]) or GitHub issues. Thanks!

References

[1] Li, Da, et al. "Deeper, broader and artier domain generalization." Proceedings of the IEEE international conference on computer vision. 2017.

[2] Venkateswara, Hemanth, et al. "Deep hashing network for unsupervised domain adaptation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

You might also like...
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Official implementation of AAAI-21 paper
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

PyTorch implementation of
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

An essential implementation of BYOL in PyTorch + PyTorch Lightning
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021].  https://arxiv.org/pdf/2101.12378.pdf
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

PyTorch implementation of
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

Owner
ScottYuan
CS PhD student.
ScottYuan
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... λͺ¨λΈμ˜ κ°œλ…μ΄ν•΄λ₯Ό 돕기 μœ„ν•œ κ΅¬ν˜„λ¬Όλ‘œ ν˜„μž¬ λ³€μˆ˜λͺ…을 μƒμ„Ένžˆ μ μ—ˆκ³ 

BG Kim 3 Oct 6, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

null 770 Jan 2, 2023
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

null 121 Nov 5, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 5, 2023
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 8, 2022