SCNet: Learning Semantic Correspondence

Related tags

Deep Learning SCNet
Overview

SCNet Code

Region matching code is contributed by Kai Han ([email protected]).

Dense matching code is contributed by Rafael S. Rezende ([email protected]).

This code is written in MATLAB, and implements the SCNet[1]. For the dataset, see our project page: http://www.di.ens.fr/willow/research/scnet.

Install Dependencies

Codes

SCNet_Matconvnet

Additional Matconvnet modules implemented for SCNet. These code should be copied into matconvnet/matlab/ folder.

SCNet

This is the primary net work training and testing code.

  • SCNet_A_init.m, SCNet_AG_init.m, SCNet_AGplus_init.m: initialize the SCNet_A, SCNet_AG, SCNet_AG+.

  • SCNet_A.m, SCNet_AG.m, SCNet_AGplus.m: train SCNet_A, SCNet_AG, SCNet_AG+.

  • eva_PCR_mIoU_SCNet_A.m, eva_PCR_mIoU_SCNet_AG.m, eva_PCR_mIoU_SCNet_AGplus.m: evaluate the trained nets.

  • eva_PCR_mIoU_ImageNet_SCNet_A.m, eva_PCR_mIoU_ImageNet_SCNet_AG.m, eva_PCR_mIoU_ImageNet_SCNet_AGplus.m: evaluate SCNets with ImageNet pretrained parameters, i.e., SCNets without training.

SCNet_Baselines

Comparison code for our SCNet features and HOG features with NAM, PHM and LOM in Proposal Flow [2, 3].

  • NAM_HOG_eva.m, PHM_HOG_eva.m, LOM_HOG_eva.m: evaluate NAM, PHM, and LOM with HOG features.

  • NAM_SCNet_eva.m, PHM_SCNet_eva.m, LOM_SCNet_eva.m: evaluate NAM, PHM, and LOM with learned SCNet features.

  • HOG_SCNet_AG_eva.m: replace the learned SCNet feature by HOG feature in SCNet_AG model.

Data

We used PF-PASCAL, PF-WILLOW, PASCAL Parts and CUB data sets and follows Proposal Flow[2, 3] to generate our trainging data.

Triaining data preparation code is put in PF-PASCAL-code folder.

Notes

  • The code is provided for academic use only. Use of the code in any commercial or industrial related activities is prohibited.
  • If you use our code or dataset, please cite the paper.
@InProceedings{han2017scnet,
author = {Kai Han and Rafael S. Rezende and Bumsub Ham and Kwan-Yee K. Wong and Minsu Cho and Cordelia Schmid and Jean Ponce},
title = {SCNet: Learning Semantic Correspondence},
booktitle = {International Conference on Computer Vision (ICCV)},
year = {2017}
}

References

[1] Kai Han, Rafael S. Rezende, Bumsub Ham, Kwan-Yee K. Wong, Minsu Cho, Cordelia Schmid, Jean Ponce, "SCNet: Learning Semantic Correspondence", International Conference on Computer Vision (ICCV), 2017.

[2] Bumsub Ham, Minsu Cho, Cordelia Schmid, Jean Ponce, "Proposal Flow: Semantic Correspondences from Object Proposals", IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 2017

[3] Bumsub Ham, Minsu Cho, Cordelia Schmid, Jean Ponce, "Proposal Flow", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

You might also like...
 Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training process.

A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

A curated list of  awesome resources related to Semantic Search🔎  and Semantic Similarity tasks.
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

 Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Comments
  • about data prepare for training

    about data prepare for training

    Hi Kai Han, Thanks for sharing the code. I am trying to train the model using the code you provided, but it seems that some file is missing. Is 'PF-PASCAL-RP-500.mat' the region proposals you extracted on the PF-PASCAL dataset beforehand? Could you please give more details to prepare the data for training? Thanks!

    opened by zqaidwj1314 3
Owner
Kai Han
Visual Geometry Group (VGG)
Kai Han
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 7, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 6, 2023