Dynamical Wasserstein Barycenters for Time Series Modeling

Overview

Dynamical Wasserstein Barycenters for Time Series Modeling

This is the code related for the Dynamical Wasserstein Barycenter model published in Neurips 2021.

To run the code and replicate the results reported in our paper,

# usage: DynamicalWassersteinBarycenters.py dataSet dataFile debugFolder interpModel [--ParamTest PARAMTEST] [--lambda LAM] [--s S]

# Sample run on MSR data                                         
>> python DynamicalWassersteinBarycenters.py MSR_Batch ../Data/MSR_Data/subj090_1.mat ../debug/MSR/subj001_1.mat Wass 

# Sample run for parameter test
>> python DynamicalWassersteinBarycenters.py MSR_Batch ../Data/MSR_Data/subj090_1.mat ../debug/ParamTest/subj001_1.mat Wass --ParamTest 1 --lambda 100 --s 1.0

The interpMethod is either Wass` for the Wasserstein barycentric model or GMM`` for the linear interpolation model.

Simulated Data

The simulated data and experiment included in this supplement can be replicated using using the following commands.

# Generate 2 and 3 state simulated data                                         
>> python GenerateOptimizationExperimentData.py
>> python GenerateOptimizationExperimentData_3K.py

# usage: OptimizationExperiment.py FileIn Mode File
# Sample run for optimization experiment
>> python OptimizationExperiment.py ../data/SimulatedOptimizationData_2K/dim_5_5.mat/ WB ../debug/SimulatedData/dim_5_5_out.mat 

The Mode is either WB for Wasserstein-Bures geometry and Euc for Euclidean geometry using Cholesky decomposition parameterization.

Requirements

_libgcc_mutex=0.1=conda_forge
_openmp_mutex=4.5=1_llvm
_pytorch_select=0.2=gpu_0
blas=2.17=openblas
ca-certificates=2020.12.5=ha878542_0
certifi=2020.12.5=py38h578d9bd_1
cffi=1.14.4=py38h261ae71_0
cudatoolkit=8.0=3
cudnn=7.1.3=cuda8.0_0
cycler=0.10.0=py_2
freetype=2.10.4=h7ca028e_0
future=0.18.2=py38h578d9bd_3
immutables=0.15=py38h497a2fe_0
intel-openmp=2020.2=254
joblib=1.0.0=pyhd8ed1ab_0
jpeg=9d=h36c2ea0_0
kiwisolver=1.3.1=py38h82cb98a_0
lcms2=2.11=hcbb858e_1
ld_impl_linux-64=2.33.1=h53a641e_7
libblas=3.8.0=17_openblas
libcblas=3.8.0=17_openblas
libedit=3.1.20191231=h14c3975_1
libffi=3.3=he6710b0_2
libgcc-ng=9.3.0=h5dbcf3e_17
libgfortran-ng=7.3.0=hdf63c60_0
libgomp=9.3.0=h5dbcf3e_17
liblapack=3.8.0=17_openblas
liblapacke=3.8.0=17_openblas
libopenblas=0.3.10=pthreads_hb3c22a3_4
libpng=1.6.37=h21135ba_2
libstdcxx-ng=9.3.0=h6de172a_18
libtiff=4.1.0=h4f3a223_6
libwebp-base=1.1.0=h36c2ea0_3
llvm-openmp=11.0.0=hfc4b9b4_1
lz4-c=1.9.2=he1b5a44_3
matplotlib-base=3.3.3=py38h5c7f4ab_0
mkl=2020.4=h726a3e6_304
mkl-service=2.3.0=py38he904b0f_0
mkl_fft=1.3.0=py38h5c078b8_1
mkl_random=1.2.0=py38hc5bc63f_1
ncurses=6.2=he6710b0_1
ninja=1.10.2=py38hff7bd54_0
numpy=1.19.5=py38h18fd61f_1
numpy-base=1.18.5=py38h2f8d375_0
olefile=0.46=pyh9f0ad1d_1
openssl=1.1.1k=h7f98852_0
pillow=8.1.0=py38h357d4e7_1
pip=20.3.3=py38h06a4308_0
pot=0.7.0=py38h950e882_0
pycparser=2.20=py_2
pyparsing=2.4.7=pyh9f0ad1d_0
python=3.8.5=h7579374_1
python-dateutil=2.8.1=py_0
python_abi=3.8=1_cp38
pytorch=1.7.1=cpu_py38h36eccb8_1
readline=8.0=h7b6447c_0
scikit-learn=0.24.1=py38h658cfdd_0
scipy=1.5.2=py38h8c5af15_0
setuptools=51.1.2=py38h06a4308_4
six=1.15.0=py38h06a4308_0
sqlite=3.33.0=h62c20be_0
threadpoolctl=2.1.0=pyh5ca1d4c_0
tk=8.6.10=hbc83047_0
tornado=6.1=py38h497a2fe_1
wheel=0.36.2=pyhd3eb1b0_0
xz=5.2.5=h7b6447c_0
zlib=1.2.11=h7b6447c_3
zstd=1.4.5=h6597ccf_2
You might also like...
Code accompanying the paper
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

AntroPy: entropy and complexity of (EEG) time-series in Python
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Owner
null
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 6, 2023
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 1, 2023
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

null 21 Oct 6, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs This code aims to reproduce results obtained in the paper "Visual F

Orobix 93 Aug 17, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 5, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022