MT-GAN-PyTorch
PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning"
Dependency:
Python 3.6
PyTorch 0.4.0
Usage:
Unsupervised Domain Translation via Meta-Learning
-
Downloading labels2photos, horses2zebras, summer2winter, apple2orange, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, photos2maps and labels2facades datasets following CycleGAN.
-
Organize these translation datasets as:
meta_datarooot ├── vangogh2photo | ├── trainA | ├── trainB | ├── ukiyoe2photo ├── trainA ├── trainB ...
-
Train MT-GAN on 10-shot tranlation:
$ python train.py --name mtgan_results --model mt_gan --meta_dataroot meta_datarooot --k_spt 10 --k_qry 10 --finetune_step 1000
-
Test MT-GAN on 10-shot translation:
$ python test.py --name mtgan_results --model mt_gan --meta_dataroot meta_datarooot --k_spt 10 --k_qry 10 --finetune_step 1000
-
Train MT-GAN on 5-shot translation:
$ python train.py --name mtgan_results --model mt_gan --meta_dataroot meta_datarooot --k_spt 5 --k_qry 5 --finetune_step 1000
-
Test MT-GAN on 5-shot translation:
$ python test.py --name mtgan_results --model mt_gan --meta_dataroot meta_datarooot --k_spt 5 --k_qry 5 --finetune_step 1000