Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

Overview

NÜWA - Pytorch (wip)

Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be populated in the case that Microsoft does not open source the code by end of December. It may also contain an extension into video and audio, using a dual decoder approach.

DeepReader

Citations

@misc{wu2021nuwa,
    title   = {N\"UWA: Visual Synthesis Pre-training for Neural visUal World creAtion}, 
    author  = {Chenfei Wu and Jian Liang and Lei Ji and Fan Yang and Yuejian Fang and Daxin Jiang and Nan Duan},
    year    = {2021},
    eprint  = {2111.12417},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Question about generated videos?

    Question about generated videos?

    There are a lot of negative numbers and very small decimals (like 5e-1). But the loss degrades normally when training. Is that a normal situation? How can I make the result visible?

    opened by Fitzwong 0
  • Why the video does not pass through the encoder?

    Why the video does not pass through the encoder?

    Hi! lucidrains. Thanks for providing a great repo which is convenient to understand the NUWA paper.
    I have a question as follows: In the NUWA paper, we can see that the inputs of the Encoder are caption tokens (caption condition) and the video tokens (3DNA condition). So, in my eye, the video tokens sequence should fully self-attend in the Encoder, right? And then, the outputs condition the Decoder. The Decoder provided by you is as following. 截屏2022-05-12 上午11 07 12. It has causal self-attention and text-condition as we expected. But from the definition in paper, the condition contains the text-condition and 3DNA condition, and these two condition the Decoder. Is my opinion right? I am just curious about the condition in the NUWA paper. The Encoder in your repo is only the Text-Encoder, but the video does not pass through the encoder to condition the Encoder.

    Looking forward to your reply! Thanks!

    opened by Wang-Xiaodong1899 0
  • Questions about function forward() in NUWA please.

    Questions about function forward() in NUWA please.

    I'm confused me that, in function forward() of class NUWA, the ground-truth video is fed to transformer and calculate the output video, which is different from function generate().

    frame_embeddings = self.video_transformer(
                frame_embeddings,  # calculated from ground-truth video
                context = text_embeds,
                context_mask = text_mask
            )
    

    So when training NUWA, the loss comes from logits. But the logits are not only from text, but ground-truth video (only one transformer layer, different from the auto-regressive model in generate function). Is that some kind of cheating when training? Or should I generate logits in the same way as in generate(), and then calculate loss to train?

    opened by Fitzwong 1
  • Type of dataset for training VQ-GAN

    Type of dataset for training VQ-GAN

    Hi,

    First, thanks a lot for the amazing work! I have one question regarding the training of the VQ-GAN, do you recommend training it on a dataset similar to the dataset the nuwa model will be trained? What I mean is, if I want to train nuwa to generate sport videos based on text, do I need to also train the VQ-GAN on a sport dataset?

    Thanks a lot

    opened by antonibigata 0
  • Pseudocode for 3DNA?

    Pseudocode for 3DNA?

    me no comprendai le complex einops 😢

    Can someone give the 3DNA pseudocode to illustrate what's going on 🤗

    (Also how did lucidrains bang out thousands of lines of code in a few weeks - is he confirmed to be human? 🤔)

    opened by neel04 4
Releases(0.7.7a)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

?? Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 3, 2023
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 7, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

TuZheng 405 Jan 4, 2023
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 8, 2023
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

null 43 Dec 12, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow ?? Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 2, 2023
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

null 63 Oct 17, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 6, 2023
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 5, 2023
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022