GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

Overview

GNN4Traffic

This is the repository for the collection of Graph Neural Network for Traffic Forecasting.

If you find this repository helpful, you may consider cite our relevant work:

  • Jiang W, Luo J. Graph Neural Network for Traffic Forecasting: A Survey[J]. arXiv preprint arXiv:2101.11174, 2021. Link
  • Jiang W, Luo J. Big Data for Traffic Estimation and Prediction: A Survey of Data and Tools[J]. arXiv preprint arXiv:2103.11824, 2021. Link

For a wider collection of deep learning for traffic forecasting, you may check: DL4Traffic

Advertisement: If you are interested in maintaining this repository, feel free to drop me an email. Collaboration with Tsinghua University is always welcome, too.

Some simple paper statistics results are as follows.

Paper year count:

Top conferences with paper counts:

Top journals with paper counts:

Relevant Repositories

  • Deep Learning Time Series Forecasting Link

  • A collection of research on spatio-temporal data mining Link

  • Some TrafficFlowForecasting Solutions Link

  • Urban-computing-papers Link

  • Spatio-Temporal-papers Link

  • Awesome-Mobility-Machine-Learning-Contents Link

  • Traffic Prediction Link

2021

Journal

  • Xia T, Lin J, Li Y, et al. 3DGCN: 3-Dimensional Dynamic Graph Convolutional Network for Citywide Crowd Flow Prediction[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2021, 15(6): 1-21. Link Code

  • Zhang H, Chen L, Cao J, et al. A Combined Traffic Flow Forecasting Model Based on Graph Convolutional Network and Attention Mechanism[J]. International Journal of Modern Physics C, 2021. Link

  • Zhang T, Ding W, Chen T, et al. A Graph Convolutional Method for Traffic Flow Prediction in Highway Network[J]. Wireless Communications and Mobile Computing, 2021, 2021. Link

  • Chen P, Fu X, Wang X. A Graph Convolutional Stacked Bidirectional Unidirectional-LSTM Neural Network for Metro Ridership Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. Link

  • Zhang S, Guo Y, Zhao P, et al. A Graph-Based Temporal Attention Framework for Multi-Sensor Traffic Flow Forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. Link data

  • Han Y, Peng T, Wang C, et al. A Hybrid GLM Model for Predicting Citywide Spatio-Temporal Metro Passenger Flow[J]. ISPRS International Journal of Geo-Information, 2021, 10(4): 222. Link

  • Chen L, Bei L, An Y, et al. A Hyperparameters automatic optimization method of time graph convolution network model for traffic prediction[J]. Wireless Networks, 2021: 1-9. Link

  • Feng S, Ke J, Yang H, et al. A Multi-Task Matrix Factorized Graph Neural Network for Co-Prediction of Zone-Based and OD-Based Ride-Hailing Demand[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. Link

  • Zhu J, Tao C, Deng H, et al. AST-GCN: Attribute-Augmented Spatiotemporal Graph Convolutional Network for Traffic Forecasting[J]. IEEE Access. Link Code

  • Buroni G, Lebichot B, Bontempi G. AST-MTL: An Attention-based Multi-Task Learning Strategy for Traffic Forecasting[J]. IEEE Access, 2021. Link Code

  • Jiang H, Li L, Xian H, et al. Crowd Flow Prediction for Social Internet-of-Things Systems Based on the Mobile Network Big Data[J]. IEEE Transactions on Computational Social Systems, 2021. Link

  • Pan C, Zhu J, Kong Z, et al. DC-STGCN: Dual-Channel Based Graph Convolutional Networks for Network Traffic Forecasting[J]. Electronics, 2021, 10(9): 1014. Link

  • Bai L, Yao L, Wang X, et al. Deep spatial-temporal sequence modeling for multi-step passenger demand prediction[J]. Future Generation Computer Systems, 2021. Link

  • Zhang C, Zhang S, James J Q, et al. FASTGNN: A Topological Information Protected Federated Learning Approach For Traffic Speed Forecasting[J]. IEEE Transactions on Industrial Informatics, 2021. Link

  • Yang X, Zhu Q, Li P, et al. Fine-grained predicting urban crowd flows with adaptive spatio-temporal graph convolutional network[J]. Neurocomputing, 2021, 446: 95-105. Link

  • Fang M, Tang L, Yang X, et al. FTPG: A Fine-Grained Traffic Prediction Method With Graph Attention Network Using Big Trace Data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. Link

  • Wang X, Chai Y, Li H, et al. Graph Convolutional Network-based Model for Incident-related Congestion Prediction: A Case Study of Shanghai Expressways[J]. ACM Transactions on Management Information Systems (TMIS), 2021, 12(3): 1-22. Link

  • Wang Q, Xu C, Zhang W, et al. GraphTTE: Travel Time Estimation Based on Attention-Spatiotemporal Graphs[J]. IEEE Signal Processing Letters, 2021. Link

  • Jin C, Ruan T, Wu D, et al. HetGAT: a heterogeneous graph attention network for freeway traffic speed prediction[J]. Journal of Ambient Intelligence and Humanized Computing, 2021. Link

  • An J, Guo L, Liu W, et al. IGAGCN: Information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction[J]. Neural Networks, 2021. Link

  • Ke J, Feng S, Zhu Z, et al. Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103063. Link

  • Guo S, Lin Y, Wan H, et al. Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2021. Link

  • Zou X, Zhang S, Zhang C, et al. Long-term Origin-Destination Demand Prediction with Graph Deep Learning[J]. IEEE Transactions on Big Data, 2021. Link

  • James J Q, Markos C, Zhang S. Long-Term Urban Traffic Speed Prediction With Deep Learning on Graphs[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. Link

  • Fang Z, Pan L, Chen L, et al. MDTP: A Multi-source Deep Traffic Prediction Framework over Spatio-Temporal Trajectory Data[J]. Proc. VLDB Endow., 2021, 14(8): 1289-1297. Link

  • Zhao D, Ju C, Zhu G, et al. MePark: Using Meters as Sensors for Citywide On-Street Parking Availability Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. Link

  • Wang J, Zhang Y, Wei Y, et al. Metro Passenger Flow Prediction via Dynamic Hypergraph Convolution Networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. Link Code (still empty on 2021/5/8)

  • Sun B, Zhao D, Shi X, et al. Modeling Global Spatial–Temporal Graph Attention Network for Traffic Prediction[J]. IEEE Access, 2021. Link

  • Tang J, Liang J, Liu F, et al. Multi-community passenger demand prediction at region level based on spatio-temporal graph convolutional network[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102951. Link

  • Li G, Knoop V L, van Lint H. Multistep traffic forecasting by dynamic graph convolution: Interpretations of real-time spatial correlations[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103185. Link Code

  • Fang S, Prinet V, Chang J, et al. MS-Net: Multi-Source Spatio-Temporal Network for Traffic Flow Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. Link

  • Wang F, Xu J, Liu C, et al. On prediction of traffic flows in smart cities: a multitask deep learning based approach[J]. World Wide Web, 2021: 1-19. Link

  • Liu M, Li L, Li Q, et al. Pedestrian Flow Prediction in Open Public Places Using Graph Convolutional Network[J]. ISPRS International Journal of Geo-Information, 2021, 10(7): 455. Link

  • Ke J, Qin X, Yang H, et al. Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network[J]. Transportation Research Part C: Emerging Technologies, 2021, 122: 102858. Link Code

  • Li M, Gao S, Lu F, et al. Prediction of human activity intensity using the interactions in physical and social spaces through graph convolutional networks[J]. International Journal of Geographical Information Science, 2021: 1-28. Link data and code

  • Yang J M, Peng Z R, Lin L. Real-time spatiotemporal prediction and imputation of traffic status based on LSTM and Graph Laplacian regularized matrix factorization[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103228. Link Code

  • Jiang M, Chen W, Li X. S-GCN-GRU-NN: A novel hybrid model by combining a Spatiotemporal Graph Convolutional Network and a Gated Recurrent Units Neural Network for short-term traffic speed forecasting[J]. Journal of Data, Information and Management, 1-20. Link

  • Agafonov A A. Short-Term Traffic Data Forecasting: A Deep Learning Approach[J]. Optical Memory and Neural Networks, 2021, 30(1): 1-10. Link Code

  • Tian C, Chan W K. Spatial‐temporal attention wavenet: A deep learning framework for traffic prediction considering spatial‐temporal dependencies[J]. IET Intelligent Transport Systems, 2021. Link Code

  • Bui K H N, Cho J, Yi H. Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues[J]. Applied Intelligence, 2021: 1-12. Link

  • Li D, Lasenby J. Spatiotemporal Attention-Based Graph Convolution Network for Segment-Level Traffic Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. Link

  • Li X, Wang H, Sun P, et al. Spatiotemporal Features—Extracted Travel Time Prediction Leveraging Deep-Learning-Enabled Graph Convolutional Neural Network Model[J]. Sustainability 2021, 13, 1253. Link

  • Tang J, Zeng J. Spatiotemporal gated graph attention network for urban traffic flow prediction based on license plate recognition data[J]. Computer‐Aided Civil and Infrastructure Engineering, 2021. Link

  • Zi W, Xiong W, Chen H, et al. TAGCN: Station-level demand prediction for bike-sharing system via a temporal attention graph convolution network[J]. Information Sciences, 2021, 561: 274-285. Link

  • Zhang J, Chen H, Fang Y. TaxiInt: Predicting the Taxi Flow at Urban Traffic Hotspots Using Graph Convolutional Networks and the Trajectory Data[J]. Journal of Electrical and Computer Engineering, 2021, 2021. Link

  • Xu C, Zhang A, Xu C, et al. Traffic speed prediction: spatiotemporal convolution network based on long-term, short-term and spatial features[J]. Applied Intelligence, 2021: 1-19. Link Data

Conference

  • Li B, Guo T, Wang Y, et al. Adaptive Graph Co-Attention Networks for Traffic Forecasting[C]//PAKDD (1). 2021: 263-276. Link

  • Lee H, Park C, Jin S, et al. An Empirical Experiment on Deep Learning Models for Predicting Traffic Data[C]. Accepted at 37th IEEE International Conference on Data Engineering (ICDE 2021), 2021. Link

  • Ye J, Sun L, Du B, et al. Coupled Layer-wise Graph Convolution for Transportation Demand Prediction[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2021. Link Code

  • Meng C, Rambhatla S, Liu Y. Cross-Node Federated Graph Neural Network for Spatio-Temporal Data Modeling[C]. In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '21). Association for Computing Machinery. 2021. Link

  • Shang C, Chen J, Bi J. Discrete Graph Structure Learning for Forecasting Multiple Time Series[C]. International Conference on Learning Representations (ICLR), 2021. Link Code

  • Oreshkin B N, Amini A, Coyle L, et al. FC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic Forecasting[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2021. Link Code

  • Dees B S, Xu Y L, Constantinides A G, et al. Graph Theory for Metro Traffic Modelling[C]. International Joint Conference on Neural Networks (IJCNN), 2021. Link

  • Guo K, Hu Y, Sun Y, et al. Hierarchical Graph Convolution Networks for Traffic Forecasting[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2021. Link Code

  • Wang S, Zhang M, Miao H, et al. MT-STNets: Multi-Task Spatial-Temporal Networks for Multi-Scale Traffic Prediction[C]//Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). Society for Industrial and Applied Mathematics, 2021: 504-512. Link

  • Jing B, Tong H, Zhu Y. Network of Tensor Time Series[C]. Accepted by WWW 2021. Link

  • Lin H, Fan Y, Zhang J, et al. REST: Reciprocal Framework for Spatiotemporal-coupled Predictions[C]//Proceedings of the Web Conference 2021. 2021: 3136-3145. Link

  • Pal S, Ma L, Zhang Y, et al. RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting[C]. Accepted at the International Conference on Machine Learning (ICML) 2021. Link Code

  • Yang G, Wen J, Yu D, et al. Spatial-Temporal Dilated and Graph Convolutional Network for traffic prediction[C]//2020 Chinese Automation Congress (CAC). IEEE, 2020: 802-806. Link

  • Mengzhang L, Zhanxing Z. Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2021. Link Code

  • Fang Z, Long Q, Song G, et al. Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting[C]. In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '21). Association for Computing Machinery. 2021. Link Code

  • Hong G, Wang Z, Han T, et al. Spatiotemporal Multi-Graph Convolutional Network for Taxi Demand Prediction[C]//2021 11th International Conference on Information Science and Technology (ICIST). IEEE, 2021: 242-250. Link

  • Roy A, Roy K K, Ali A A, et al. SST-GNN: Simplified Spatio-temporal Traffic forecasting model using Graph Neural Network[C]. Accepted for publication in 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-2021). Link

  • Fu H, Wang Z, Yu Y, et al. Traffic Flow Driven Spatio-Temporal Graph Convolutional Network for Ride-Hailing Demand Forecasting[C]//PAKDD (1). 2021: 754-765. Link

  • Zhang X, Huang C, Xu Y, Xia L, et al. Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2021. Link Code

  • Li M, Tong P, Li M, et al. Traffic Flow Prediction with Vehicle Trajectories[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2021. Link Code

  • Yang Q, Zhong T, Zhou F. Traffic Speed Forecasting Via Spatio-Temporal Attentive Graph Isomorphism Network[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 7943-7947. Link

  • Chen X, Wang J, Xie K. TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on Graph Neural Networks and Continual Learning[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI. 2021. Link Code

  • Roy A, Roy K K, Ali A A, et al. Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph Neural Network[C]. 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. Link Code

  • Chen Y, Segovia-Dominguez I, Gel Y R. Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting[C]. Accepted at the International Conference on Machine Learning (ICML) 2021. Link Code

Preprint

  • Chen Z, Wu H, O'Connor N E, et al. A Comparative Study of Using Spatial-Temporal Graph Convolutional Networks for Predicting Availability in Bike Sharing Schemes[J]. arXiv preprint arXiv:2104.10644, 2021. Link

  • Fu J, Zhou W, Chen Z. Bayesian Graph Convolutional Network for Traffic Prediction[J]. arXiv preprint arXiv:2104.00488, 2021. Link

  • Lin H, Gao Z, Wu L, et al. Conditional Local Filters with Explainers for Spatio-Temporal Forecasting[J]. arXiv preprint arXiv:2101.01000, 2021. Link

  • Li F, Feng J, Yan H, et al. Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution[J]. arXiv preprint arXiv:2104.14917, 2021. Link Code (still empty on 2021/5/8)

  • Chen J, Li K, Li K, et al. Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing System Using Gated Graph Neural Network[J]. arXiv preprint arXiv:2101.07425, 2021. Link

  • Lu Y, Ding H, Ji S, et al. Dual attentive graph neural network for metro passenger flow prediction[J]. Researchgate preprint. Link

  • Li Y, Wang D, Moura J M F. GSA-Forecaster: Forecasting Graph-Based Time-Dependent Data with Graph Sequence Attention[J]. arXiv preprint arXiv:2104.05914, 2021. Link

  • Ye J, Zheng F, Zhao J, et al. Incorporating Reachability Knowledge into a Multi-Spatial Graph Convolution Based Seq2Seq Model for Traffic Forecasting[J]. arXiv preprint arXiv:2107.01528, 2021. Link

  • Li M, Chen S, Shen Y, et al. Online Multi-Agent Forecasting with Interpretable Collaborative Graph Neural Network[J]. arXiv preprint arXiv:2107.00894, 2021. Link

  • Wang Y, Yin H, Chen T, et al. Passenger Mobility Prediction via Representation Learning for Dynamic Directed and Weighted Graph[J]. arXiv preprint arXiv:2101.00752, 2021. Link

  • Jin G, Yan H, Li F, et al. Spatial-Temporal Dual Graph Neural Networks for Travel Time Estimation[J]. arXiv preprint arXiv:2105.13591, 2021. Link

  • Xu X, Zhang T, Xu C, et al. Spatial-Temporal Tensor Graph Convolutional Network for Traffic Prediction[J]. arXiv preprint arXiv:2103.06126, 2021. Link

2020

Journal

  • Tang C, Sun J, Sun Y, et al. A General Traffic Flow Prediction Approach Based on Spatial-Temporal Graph Attention[J]. IEEE Access, 2020, 8: 153731-153741. Link Code

  • Bogaerts T, Masegosa A D, Angarita-Zapata J S, et al. A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2020, 112: 62-77. Link

  • Qin K, Xu Y, Kang C, et al. A graph convolutional network model for evaluating potential congestion spots based on local urban built environments[J]. Transactions in GIS. Link

  • Li Z, Xiong G, Tian Y, et al. A Multi-Stream Feature Fusion Approach for Traffic Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link

  • Zhang Y, Cheng T, Ren Y, et al. A novel residual graph convolution deep learning model for short-term network-based traffic forecasting[J]. International Journal of Geographical Information Science, 2020, 34(5): 969-995. Link

  • Zhu H, Xie Y, He W, et al. A Novel Traffic Flow Forecasting Method Based on RNN-GCN and BRB[J]. Journal of Advanced Transportation, 2020, 2020. Link

  • Azzedine Boukerche, Jiahao Wang, A Performance Modeling and Analysis of a Novel Vehicular Traffic Flow Prediction System Using a Hybrid Machine Learning-Based Model, Ad Hoc Networks, 2020. Link

  • Guo K, Hu Y, Qian Z S, et al. An Optimized Temporal-Spatial Gated Graph Convolution Network for Traffic Forecasting[J]. IEEE Intelligent Transportation Systems Magazine, 2020. Link

  • Wang Y, Xu D, Peng P, et al. An urban commuters’ OD hybrid prediction method based on big GPS data[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(9): 093128. Link

  • James J Q. Citywide traffic speed prediction: A geometric deep learning approach[J]. Knowledge-Based Systems, 2020: 106592. Link

  • Han X, Shen G, Yang X, et al. Congestion recognition for hybrid urban road systems via digraph convolutional network[J]. Transportation Research Part C: Emerging Technologies, 2020, 121: 102877. Link

  • Luo M, Du B, Klemmer K, et al. D3P: Data-driven Demand Prediction for Fast Expanding Electric Vehicle Sharing Systems[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2020, 4(1): 1-21. Link

  • Zhang J, Chen F, Cui Z, et al. Deep Learning Architecture for Short-Term Passenger Flow Forecasting in Urban Rail Transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link Code

  • Yu L, Du B, Hu X, et al. Deep Spatio-Temporal Graph Convolutional Network for Traffic Accident Prediction[J]. Neurocomputing, 2020. Link Code

  • Xiao G, Wang R, Zhang C, et al. Demand prediction for a public bike sharing program based on spatio-temporal graph convolutional networks[J]. Multimedia Tools and Applications, 2020: 1-19. Link

  • Feng D, Wu Z, Zhang J, et al. Dynamic Global-Local Spatial-Temporal Network for Traffic Speed Prediction[J]. IEEE Access, 2020, 8: 209296-209307. Link

  • Guo K, Hu Y, Qian Z, et al. Dynamic Graph Convolution Network for Traffic Forecasting Based on Latent Network of Laplace Matrix Estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link Code

  • Xiong X, Ozbay K, Jin L, et al. Dynamic Origin–Destination Matrix Prediction with Line Graph Neural Networks and Kalman Filter[J]. Transportation Research Record, 2020: 0361198120919399. Link Code

  • Chen K, Chen F, Lai B, et al. Dynamic Spatio-Temporal Graph-Based CNNs for Traffic Flow Prediction[J]. IEEE Access, 2020, 8: 185136-185145. Link

  • Wang H W, Peng Z R, Wang D, et al. Evaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approach[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102619. Link Code

  • Zhou Q, Gu J J, Ling C, et al. Exploiting Multiple Correlations Among Urban Regions for Crowd Flow Prediction[J]. Journal of Computer Science and Technology, 2020, 35: 338-352. Link

  • Wang X, Guan X, Cao J, et al. Forecast Network-Wide Traffic States for Multiple Steps Ahead: A Deep Learning Approach Considering Dynamic Non-Local Spatial Correlation and Non-Stationary Temporal Dependency[J]. Transportation Research Part C: Emerging Technologies, 2020, 119. Link

  • Yu B, Lee Y, Sohn K. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 189-204. Link

  • Zhou Z, Wang Y, Xie X, et al. Foresee Urban Sparse Traffic Accidents: A Spatiotemporal Multi-Granularity Perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 2020. Link

  • Xu D, Wei C, Peng P, et al. GE-GAN: A novel deep learning framework for road traffic state estimation[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102635. Link

  • Ge L, Li S, Wang Y, et al. Global Spatial-Temporal Graph Convolutional Network for Urban Traffic Speed Prediction[J]. Applied Sciences, 2020, 10(4): 1509. Link

  • Zhang T, Guo G. Graph Attention LSTM: A Spatio-Temperal Approach for Traffic Flow Forecasting[J]. IEEE Intelligent Transportation Systems Magazine, 2020. Link

  • He K, Chen X, Wu Q, et al. Graph Attention Spatial-Temporal Network with Collaborative Global-Local Learning for Citywide Mobile Traffic Prediction[J]. IEEE Transactions on Mobile Computing, 2020. Link

  • Zhang K, He F, Zhang Z, et al. Graph attention temporal convolutional network for traffic speed forecasting on road networks[J]. Transportmetrica B: Transport Dynamics, 2020: 1-19. Link

  • Cui Z, Lin L, Pu Z, et al. Graph Markov Network for Traffic Forecasting with Missing Data[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102671. Link

  • Li C, Bai L, Liu W, et al. Graph Neural Network for Robust Public Transit Demand Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link

  • Mallick T, Balaprakash P, Rask E, et al. Graph-Partitioning-Based Diffusion Convolution Recurrent Neural Network for Large-Scale Traffic Forecasting[J]. Transportation Research Record, 2020: 0361198120930010. Link Code

  • Liu J, Ong G P, Chen X. GraphSAGE-Based Traffic Speed Forecasting for Segment Network With Sparse Data[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link

  • Davis N, Raina G, Jagannathan K. Grids versus graphs: Partitioning space for improved taxi demand-supply forecasts[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link Code

  • Shin Y, Yoon Y. Incorporating Dynamicity of Transportation Network With Multi-Weight Traffic Graph Convolutional Network for Traffic Forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link

  • Bing H, Zhifeng X, Yangjie X, et al. Integrating Semantic Zoning Information with the Prediction of Road Link Speed Based on Taxi GPS Data[J]. Complexity, 2020, 2020. Link

  • Lewenfus G, Martins W A, Chatzinotas S, et al. Joint Forecasting and Interpolation of Time-Varying Graph Signals Using Deep Learning[J]. IEEE Transactions on Signal and Information Processing over Networks, 2020. Link

  • Cui Z, Ke R, Pu Z, et al. Learning traffic as a graph: A gated graph wavelet recurrent neural network for network-scale traffic prediction[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102620. Link

  • Lu Z, Lv W, Cao Y, et al. LSTM Variants Meet Graph Neural Networks for Road Speed Prediction[J]. Neurocomputing, 2020. Link

  • Fang S, Pan X, Xiang S, et al. Meta-MSNet: Meta-Learning based Multi-Source Data Fusion for Traffic Flow Prediction[J]. IEEE Signal Processing Letters, 2020. Link

  • Chen Z, Zhao B, Wang Y, et al. Multitask Learning and GCN-Based Taxi Demand Prediction for a Traffic Road Network[J]. Sensors, 2020, 20(13): 3776. Link

  • Zhang J, Chen F, Guo Y. Multi-Graph Convolutional Network for Short-Term Passenger Flow Forecasting in Urban Rail Transit[J]. IET Intelligent Transport Systems, 2020. Link Code

  • Yin X, Wu G, Wei J, et al. Multi-Stage Attention Spatial-Temporal Graph Networks for Traffic Prediction[J]. Neurocomputing, 2020. Link

  • Gong Y, Li Z, Zhang J, et al. Online Spatio-temporal Crowd Flow Distribution Prediction for Complex Metro System[J]. IEEE Transactions on Knowledge and Data Engineering, 2020. Link

  • Guo K, Hu Y, Qian Z, et al. Optimized Graph Convolution Recurrent Neural Network for Traffic Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link

  • Chu J, Wang X, Qian K, et al. Passenger demand prediction with cellular footprints[J]. IEEE Transactions on Mobile Computing, 2020. Link

  • Liu L, Chen J, Wu H, et al. Physical-Virtual Collaboration Modeling for Intra-and Inter-Station Metro Ridership Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link Code with data

  • Sun J, Zhang J, Li Q, et al. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020. Link

  • Mohanty S, Pozdnukhov A, Cassidy M. Region-wide congestion prediction and control using deep learning[J]. Transportation Research Part C: Emerging Technologies, 2020, 116: 102624. Link

  • Zhou F, Yang Q, Zhang K, et al. Reinforced Spatio-Temporal Attentive Graph Neural Networks for Traffic Forecasting[J]. IEEE Internet of Things Journal, 2020. Link

  • Zhang W, Liu H, Liu Y, et al. Semi-Supervised City-Wide Parking Availability Prediction via Hierarchical Recurrent Graph Neural Network[J]. IEEE Transactions on Knowledge and Data Engineering, 2020. Link

  • Fukuda S, Uchida H, Fujii H, et al. Short-term prediction of traffic flow under incident conditions using graph convolutional recurrent neural network and traffic simulation[J]. IET Intelligent Transport Systems, 2020. Link

  • Guo W, Yuan W. Short-term traffic speed forecasting based on graph attention temporal convolutional networks[J]. Neurocomputing, 2020. Link

  • Peng H, Wang H, Du B, et al. Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[J]. Information Sciences, 2020, 521: 277-290. Link Code

  • Pan Z, Zhang W, Liang Y, et al. Spatio-Temporal Meta Learning for Urban Traffic Prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2020. Link

  • Zhao B, Gao X, Liu J, et al. Spatiotemporal Data Fusion in Graph Convolutional Networks for Traffic Prediction[J]. IEEE Access, 2020. Link

  • Xu Z, Kang Y, Cao Y, et al. Spatiotemporal Graph Convolution Multifusion Network for Urban Vehicle Emission Prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020. Link

  • Kong X, Xing W, Wei X, et al. STGAT: Spatial-Temporal Graph Attention Networks for Traffic Flow Forecasting[J]. IEEE Access, 2020. Link Code (still empty on Aug 3, 2020)

  • Lv M, Hong Z, Chen L, et al. Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link

  • Qiu H, Zheng Q, Msahli M, et al. Topological Graph Convolutional Network-Based Urban Traffic Flow and Density Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link Code

  • Du B, Hu X, Sun L, et al. Traffic Demand Prediction Based on Dynamic Transition Convolutional Neural Network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. Link

  • Sun X, Li J, Lv Z, et al. Traffic Flow Prediction Model Based on Spatio-Temporal Dilated Graph Convolution[J]. KSII Transactions on Internet & Information Systems, 2020, 14(9). Link

  • Li W, Wang X, Zhang Y, et al. Traffic Flow Prediction over Muti-Sensor Data Correlation with Graph Convolution Network[J]. Neurocomputing, 2020. Link

  • Cai L, Janowicz K, Mai G, et al. Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting[J]. Transactions in GIS. Link

  • Shen Y, Jin C, Hua J. TTPNet: A Neural Network for Travel Time Prediction Based on Tensor Decomposition and Graph Embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2020. Link Code

  • Jin G, Cui Y, Zeng L, et al. Urban ride-hailing demand prediction with multiple spatio-temporal information fusion network[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102665. Link

  • Zhang Y, Lu M, Li H. Urban Traffic Flow Forecast Based on FastGCRNN[J]. Journal of Advanced Transportation, 2020, 2020. Link

  • Zhou F, Yang Q, Zhong T, et al. Variational Graph Neural Networks for Road Traffic Prediction in Intelligent Transportation Systems[J]. IEEE Transactions on Industrial Informatics, 2020. Link

Conference

  • Li Z, Li L, Peng Y, et al. A Two-Stream Graph Convolutional Neural Network for Dynamic Traffic Flow Forecasting[C]//2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2020: 355-362. Link

  • Zhang Y, Dong X, Shang L, et al. A multi-modal graph neural network approach to traffic risk forecasting in smart urban sensing[C]//2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). IEEE, 2020: 1-9. Link

  • Bai L, Yao L, Li C, et al. Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting[C]//Advances in Neural Information Processing Systems (NeurIPS), 2020. Link Code

  • Lu Y, Li C. AGSTN: Learning Attention-adjusted Graph Spatio-Temporal Networks for Short-term Urban Sensor Value Forecasting[C]//2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. Link Code

  • Zhao H, Yang H, Wang Y, et al. Attention Based Graph Bi-LSTM Networks for Traffic Forecasting[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020: 1-6. Link

  • Zhang H, Liu J, Tang Y, et al. Attention based Graph Covolution Networks for Intelligent Traffic Flow Analysis[C]//2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). IEEE, 2020: 558-563. Link

  • Wu Z, Pan S, Long G, et al. Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks[C].//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020. Link Code

  • Xiaomin Fang, Jizhou Huang, Fan Wang, Lingke Zeng, Haijin Liang, and Haifeng Wang. 2020. ConSTGAT: Contextual Spatial-Temporal Graph Attention Network for Travel Time Estimation at Baidu Maps. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '20). Association for Computing Machinery, New York, NY, USA, 2697–2705. Link

  • Sun Y, Wang Y, Fu K, et al. Constructing Geographic and Long-term Temporal Graph for Traffic Forecasting[C]. International Conference on Pattern Recognition. Springer, 2020. Link

  • Zhang X, Cao R, Zhang Z, et al. Crowd Flow Forecasting with Multi-Graph Neural Networks[C]//2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-7. Link

  • Xie Q, Guo T, Chen Y, et al. Deep Graph Convolutional Networks for Incident-Driven Traffic Speed Prediction[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM). 2020. Link Note: previously known as: " How do urban incidents affect traffic speed?" A Deep Graph Convolutional Network for Incident-driven Traffic Speed Prediction[J]. Link_arxiv

  • He S, Shin K G. Dynamic Flow Distribution Prediction for Urban Dockless E-Scooter Sharing Reconfiguration[C]//Proceedings of The Web Conference 2020. 2020: 133-143. Link

  • Guopeng L I, Knoop V L, van Lint H. Dynamic Graph Filters Networks: A Gray-box Model for Multistep Traffic Forecasting[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020: 1-6. Link Code

  • Tang C, Sun J, Sun Y. Dynamic Spatial-Temporal Graph Attention Graph Convolutional Network for Short-Term Traffic Flow Forecasting[C]//2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020: 1-5. Link

  • Ma J, Gu J, Zhou Q, et al. Dynamic-Static-based Spatiotemporal Multi-Graph Neural Networks for Passenger Flow Prediction[C]//2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2020: 673-678. Link

  • Shao K, Wang K, Chen L, et al. Estimation of Urban Travel Time with Sparse Traffic Surveillance Data[C]//Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence. 2020: 218-223. Link

  • Li Y, Moura J M F. Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data[C]//Proceedings of the Twenty-fourth European Conference on Artificial Intelligence. 2020. Link

  • Sánchez C S, Wieder A, Sottovia P, et al. GANNSTER: Graph-Augmented Neural Network Spatio-Temporal Reasoner for Traffic Forecasting[C]//International Workshop on Advanced Analysis and Learning on Temporal Data. 2020. Link Code (empty till 2020/11/17)

  • He Y, Zhao Y, Wang H, et al. GC-LSTM: A Deep Spatiotemporal Model for Passenger Flow Forecasting of High-Speed Rail Network[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020: 1-6. Link

  • Chen L, Han K, Yin Q, et al. GDCRN: Global Diffusion Convolutional Residual Network for Traffic Flow Prediction[C]//International Conference on Knowledge Science, Engineering and Management. Springer, Cham, 2020: 438-449. Link

  • Zheng C, Fan X, Wang C, et al. Gman: A graph multi-attention network for traffic prediction[C].//Proceedings of the AAAI Conference on Artificial Intelligence. 2020. Link Code

  • Song Q, Ming R B, Hu J, et al. Graph Attention Convolutional Network: Spatiotemporal Modeling for Urban Traffic Prediction[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020: 1-6. Link Code (Still empty till 2020/1/7)

  • Chen F, Chen Z, Biswas S, et al. Graph Convolutional Networks with Kalman Filtering for Traffic Prediction[C]//Proceedings of the 28th International Conference on Advances in Geographic Information Systems. 2020: 135-138. Link Code

  • Chen J, Liao S, Hou J, et al. GST-GCN: A Geographic-Semantic-Temporal Graph Convolutional Network for Context-aware Traffic Flow Prediction on Graph Sequences[C]//2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020: 1604-1609. Link

  • Huiting Hong, Yucheng Lin, Xiaoqing Yang, Zang Li, Kung Fu, Zheng Wang, Xiaohu Qie, and Jieping Ye. 2020. HetETA: Heterogeneous Information Network Embedding for Estimating Time of Arrival. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '20). Association for Computing Machinery, New York, NY, USA, 2444–2454. Link Code

  • Dai R, Xu S, Gu Q, et al. Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction with Navigation Data[C].//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020. Link

  • Xin Y, Miao D, Zhu M, et al. InterNet: Multistep Traffic Forecasting by Interacting Spatial and Temporal Features[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM). 2020: 3477-3480. Link

  • Yeghikyan G, Opolka F L, Nanni M, et al. Learning Mobility Flows from Urban Features with Spatial Interaction Models and Neural Networks[C]//2020 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE, 2020. Link Code

  • Huang R, Huang C, Liu Y, et al. LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional Networks[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI. 2020. Link

  • Qu Y, Zhu Y, Zang T, et al. Modeling Local and Global Flow Aggregation for Traffic Flow Forecasting[C]//International Conference on Web Information Systems Engineering (WISE). Springer, Cham, 2020: 414-429. Link

  • Chen W, Chen L, Xie Y, et al. Multi-Range Attentive Bicomponent Graph Convolutional Network for Traffic Forecasting[C].//Proceedings of the AAAI Conference on Artificial Intelligence. 2020. Link

  • Ye J, Zhao J, Ye K, et al. Multi-STGCnet: A Graph Convolution Based Spatial-Temporal Framework for Subway Passenger Flow Forecasting[C]//2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8. Link Code

  • Wang S, Miao H, Chen H, et al. Multi-task Adversarial Spatial-Temporal Networks for Crowd Flow Prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM). 2020: 1555-1564. Link

  • Wu M, Zhu C, Chen L. Multi-Task Spatial-Temporal Graph Attention Network for Taxi Demand Prediction[C]//Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence. 2020: 224-228. Link

  • Wang F, Xu J, Liu C, et al. MTGCN: A Multitask Deep Learning Model for Traffic Flow Prediction[C]//International Conference on Database Systems for Advanced Applications (DASFAA). Springer, Cham, 2020: 435-451. Link

  • Shi H, Yao Q, Guo Q, et al. Predicting Origin-Destination Flow via Multi-Perspective Graph Convolutional Network[C]//2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020: 1818-1821. Link

  • Hu J, Yang B, Guo C, et al. Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks[C]//2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020: 1417-1428. Link Code

  • Heglund J S W, Taleongpong P, Hu S, et al. Railway Delay Prediction with Spatial-Temporal Graph Convolutional Networks[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020: 1-6. Link

  • Yang F, Chen L, Zhou F, et al. Relational State-Space Model for Stochastic Multi-Object Systems[C]//International Conference on Learning Representations. 2020. Link Code

  • Qin T, Liu T, Wu H, et al. RESGCN: RESidual Graph Convolutional Network based Free Dock Prediction in Bike Sharing System[C]//2020 21st IEEE International Conference on Mobile Data Management (MDM). IEEE, 2020: 210-217. Link

  • Zhou Z, Wang Y, Xie X, et al. RiskOracle: A Minute-level Citywide Traffic Accident Forecasting Framework[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020. Link Code

  • Xie Y, Xiong Y, Zhu Y. SAST-GNN: A Self-Attention Based Spatio-Temporal Graph Neural Network for Traffic Prediction[C]//International Conference on Database Systems for Advanced Applications. Springer, Cham, 2020: 707-714. Link

  • Li W, Yang X, Tang X, et al. SDCN: Sparsity and Diversity Driven Correlation Networks for Traffic Demand Forecasting[C]//2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8. Link

  • Zhang W, Liu H, Liu Y, et al. Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020. Link Code

  • Li A, Axhausen K W. Short-term Traffic Demand Prediction using Graph Convolutional Neural Networks[C]. AGILE: GIScience Series, 2020, 1: 1-14. Link

  • Huang Y, Zhang S, Wen J, et al. Short-Term Traffic Flow Prediction Based on Graph Convolutional Network Embedded LSTM[C]//International Conference on Transportation and Development (ICTD) 2020. Reston, VA: American Society of Civil Engineers, 2020: 159-168. Link

  • Wang Q, Guo B, Ouyang Y, et al. Spatial Community-Informed Evolving Graphs for Demand Prediction[C]. Proceedings of The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2020). Link

  • Lu B, Gan X, Jin H, et al. Spatiotemporal Adaptive Gated Graph Convolution Network for Urban Traffic Flow Forecasting[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM). 2020: 1025-1034. Link Code

  • Zhang X, Huang C, Xu Y, et al. Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM). 2020: 1853-1862. Link Code

  • Zhang X, Zhang Z, Jin X. Spatial-Temporal Graph Attention Model on Traffic Forecasting[C]//2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2020: 999-1003. Link

  • Wei C, Sheng J. Spatial-temporal Graph Attention Networks for Traffic Flow Forecasting[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020, 587(1): 012065. Link

  • Song C, Lin Y, Guo S, et al. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting[C].//Proceedings of the AAAI Conference on Artificial Intelligence. 2020. Link Author's Code Code1 Code2

  • Zhang Q, Chang J, Meng G, et al. Spatio-Temporal Graph Structure Learning for Traffic Forecasting[C].//Proceedings of the AAAI Conference on Artificial Intelligence. 2020. Link

  • Cao D, Wang Y, Duan J, et al. Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting[C]. Advances in Neural Information Processing Systems, 2020, 33. Link

  • Ou J, Sun J, Zhu Y, et al. STP-TrellisNets: Spatial-Temporal Parallel TrellisNets for Metro Station Passenger Flow Prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM). 2020: 1185-1194. Link

  • Park C, Lee C, Bahng H, et al. ST-GRAT: A Novel Spatio-temporal Graph Attention Networks for Accurately Forecasting Dynamically Changing Road Speed[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM). 2020: 1215-1224. Link Note: previously known as ST-GRAT: A Spatio-Temporal Graph Attention Network for Traffic Forecasting[C] Link_arxiv

  • Ruiqiang Liu, Shuai Zhao, Bo Cheng, et al. ST-MFM: A Spatiotemporal Multi-Modal Fusion Model for Urban Anomalies Prediction[C]//Proceedings of the Twenty-fourth European Conference on Artificial Intelligence. 2020. Link Code (Still empty on 2020/9/18)

  • Tian K, Guo J, Ye K, et al. ST-MGAT: Spatial-Temporal Multi-Head Graph Attention Networks for Traffic Forecasting[C]//2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2020: 714-721. Link Code

  • Li Z, Sergin N D, Yan H, et al. Tensor Completion for Weakly-dependent Data on Graph for Metro Passenger Flow Prediction[C].//Proceedings of the AAAI Conference on Artificial Intelligence. 2020. Link

  • Chen L. The Multi-Task Time-Series Graph Network for Traffic Congestion Prediction[C]//2020 The 3rd International Conference on Machine Learning and Machine Intelligence. 2020: 19-23. Link

  • Suining He and Kang G. Shin. 2020. Towards Fine-grained Flow Forecasting: A Graph Attention Approach for Bike Sharing Systems. In Proceedings of The Web Conference 2020 (WWW ’20). Association for Computing Machinery, New York, NY, USA, 88–98. Link

  • Xu X, Zheng H, Feng X, et al. Traffic Flow Forecasting with Spatial-Temporal Graph Convolutional Networks in Edge-Computing Systems[C]//2020 International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2020: 251-256. Link

  • Agafonov A. Traffic Flow Prediction Using Graph Convolution Neural Networks[C]//2020 10th International Conference on Information Science and Technology (ICIST). IEEE, 2020: 91-95. Link

  • Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia, and Jian Yu. 2020. Traffic Flow Prediction via Spatial Temporal Graph Neural Network. In Proceedings of The Web Conference 2020 (WWW ’20). Association for Computing Machinery, New York, NY, USA, 1082–1092. Link

  • Ramadan A, Elbery A, Zorba N, et al. Traffic Forecasting using Temporal Line Graph Convolutional Network: Case Study[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020: 1-6. Link

  • Mallick T, Balaprakash P, Rask E, et al. Transfer Learning with Graph Neural Networks for Short-Term Highway Traffic Forecasting[C]. International Conference on Pattern Recognition. Springer, 2020. Link Code

  • Chen X, Zhang Y, Du L, et al. TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network for Traffic Flow Forecasting[C]//2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. Link

  • Kim S S, Chung M, Kim Y K. Urban Traffic Prediction using Congestion Diffusion Model[C]//2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). IEEE, 2020: 1-4. Link

Preprint

  • Chen H, Rossi R A, Mahadik K, et al. A Context Integrated Relational Spatio-Temporal Model for Demand and Supply Forecasting[J]. arXiv preprint arXiv:2009.12469, 2020. Link

  • Chan V, Gan Q, Bayen A. A Graph Convolutional Network with Signal Phasing Information for Arterial Traffic Prediction[J]. arXiv preprint arXiv:2012.13479, 2020. Link Code

  • Zhu J, Song Y, Zhao L, et al. A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic Forecasting[J]. arXiv preprint arXiv:2006.11583v1, 2020. Link Code

  • Wang C, Zhang K, Wang H, et al. Auto-STGCN: Autonomous Spatial-Temporal Graph Convolutional Network Search Based on Reinforcement Learning and Existing Research Results[J]. arXiv preprint arXiv:2010.07474, 2020. Link Code

  • Fu J, Zhou W, Chen Z. Bayesian Spatio-Temporal Graph Convolutional Network for Traffic Forecasting[J]. arXiv preprint arXiv:2010.07498, 2020. Link

  • Jin G, Xi Z, Sha H, et al. Deep Multi-View Spatiotemporal Virtual Graph Neural Network for Significant Citywide Ride-hailing Demand Prediction[J]. arXiv preprint arXiv:2007.15189, 2020. Link

  • Jia C, Wu B, Zhang X P. Dynamic Spatiotemporal Graph Neural Network with Tensor Network[J]. arXiv preprint arXiv:2003.08729, 2020. Link

  • Hermsen F, Bloem P, Jansen F, et al. End-to-End Learning from Complex Multigraphs with Latent Graph Convolutional Networks[J]. arXiv preprint arXiv:1908.05365, 2019. Link Code

  • Wang L, Chai D, Liu X, et al. Exploring the Generalizability of Spatio-Temporal Crowd Flow Prediction: Meta-Modeling and an Analytic Framework[J]. arXiv preprint arXiv:2009.09379, 2020. Link

  • Xie Y, Xiong Y, Zhu Y. ISTD-GCN: Iterative Spatial-Temporal Diffusion Graph Convolutional Network for Traffic Speed Forecasting[J]. arXiv preprint arXiv:2008.03970, 2020. Link

  • Zhu J, Han X, Deng H, et al. KST-GCN: A Knowledge-Driven Spatial-Temporal Graph Convolutional Network for Traffic Forecasting[J]. arXiv preprint arXiv:2011.14992, 2020. Link

  • Zheng B, Hu Q, Ming L, et al. Spatial-Temporal Demand Forecasting and Competitive Supply via Graph Convolutional Networks[J]. arXiv preprint arXiv:2009.12157, 2020. Link

  • Pian W, Wu Y. Spatial-Temporal Dynamic Graph Attention Networks for Ride-hailing Demand Prediction[J]. arXiv preprint arXiv:2006.05905, 2020. Link

  • Xu M, Dai W, Liu C, et al. Spatial-Temporal Transformer Networks for Traffic Flow Forecasting[J]. arXiv preprint arXiv:2001.02908, 2020. Link

  • Maas T, Bloem P. Uncertainty Intervals for Graph-based Spatio-Temporal Traffic Prediction[J]. arXiv preprint arXiv:2012.05207, 2020. Link

2019

Journal

  • Yang S, Ma W, Pi X, et al. A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 248-265. Link

  • Zhang Y, Cheng T, Ren Y. A graph deep learning method for short‐term traffic forecasting on large road networks[J]. Computer‐Aided Civil and Infrastructure Engineering, 2019, 34(10): 877-896. Link

  • Wei L, Yu Z, Jin Z, et al. Dual Graph for Traffic Forecasting[J]. IEEE Access, 2019. Link

  • San Kim T, Lee W K, Sohn S Y. Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects[J]. PloS one, 2019, 14(9). Link

  • Xu Y, Li D. Incorporating graph attention and recurrent architectures for city-wide taxi demand prediction[J]. ISPRS International Journal of Geo-Information, 2019, 8(9): 414. Link

  • Zhu H, Luo Y, Liu Q, et al. Multistep Flow Prediction on Car-Sharing Systems: A Multi-Graph Convolutional Neural Network with Attention Mechanism[J]. International Journal of Software Engineering and Knowledge Engineering, 2019, 29(11n12): 1727-1740. Link

  • Zhang Z, Li M, Lin X, et al. Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies[J]. Transportation research part C: emerging technologies, 2019, 105: 297-322. Link

  • Han Y, Wang S, Ren Y, et al. Predicting station-level short-term passenger flow in a citywide metro network using spatiotemporal graph convolutional neural networks[J]. ISPRS International Journal of Geo-Information, 2019, 8(6): 243. Link

  • Yu J J Q, Gu J. Real-time traffic speed estimation with graph convolutional generative autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3940-3951. Link

  • Xu D, Dai H, Wang Y, et al. Road traffic state prediction based on a graph embedding recurrent neural network under the SCATS[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(10): 103125. Link

  • Xie Z, Lv W, Huang S, et al. Sequential graph neural network for urban road traffic speed prediction[J]. IEEE Access, 2019. Link

  • Zhang C, James J Q, Liu Y. Spatial-Temporal Graph Attention Networks: A Deep Learning Approach for Traffic Forecasting[J]. IEEE Access, 2019, 7: 166246-166256. Link

  • Zhao L, Song Y, Zhang C, et al. T-gcn: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019. Link Code

  • Cui Z, Henrickson K, Ke R, et al. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019. Link Code

Conference

  • Li Z, Xiong G, Chen Y, et al. A Hybrid Deep Learning Approach with GCN and LSTM for Traffic Flow Prediction[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019: 1929-1933. Link

  • Guo J, Song C, Wang H. A Multi-step Traffic Speed Forecasting Model Based on Graph Convolutional LSTM[C]//2019 Chinese Automation Congress (CAC). IEEE, 2019: 2466-2471. Link

  • Guo S, Lin Y, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33: 922-929. Link Code-gluon Code-pytorch Code1

  • Guo R, Jiang Z, Huang J, et al. BikeNet: Accurate Bike Demand Prediction Using Graph Neural Networks for Station Rebalancing[C]//2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019: 686-693. Link

  • Diao Z, Wang X, Zhang D, et al. Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33: 890-897. Link

  • Chen C, Li K, Teo S G, et al. Gated Residual Recurrent Graph Neural Networks for Traffic Prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33: 485-492. Link

  • Zhang Y, Wang S, Chen B, et al. GCGAN: Generative Adversarial Nets with Graph CNN for Network-Scale Traffic Prediction[C]//2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019: 1-8. Link

  • Cirstea R G, Guo C, Yang B. Graph Attention Recurrent Neural Networks for Correlated Time Series Forecasting[C]. MiLeTS’19, Anchorage, Alaska, USA, 2019. Link

  • Jepsen T S, Jensen C S, Nielsen T D. Graph convolutional networks for road networks[C]//Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2019: 460-463. Link Code

  • Wu Z, Pan S, Long G, et al. Graph wavenet for deep spatial-temporal graph modeling[C]. //Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI. 2019. Link Code

  • Fang S, Zhang Q, Meng G, et al. Gstnet: Global spatial-temporal network for traffic flow prediction[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI. 2019: 10-16. Link

  • Kang Z, Xu H, Hu J, et al. Learning Dynamic Graph Embedding for Traffic Flow Forecasting: A Graph Self-Attentive Method[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019: 2570-2576. Link

  • Lu Z, Lv W, Xie Z, et al. Leveraging Graph Neural Network with LSTM For Traffic Speed Prediction[C]//2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019: 74-81. Link

  • Zhang T, Jin J, Yang H, et al. Link speed prediction for signalized urban traffic network using a hybrid deep learning approach[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019: 2195-2200. Link

  • Wright M A, Ehlers S F G, Horowitz R. Neural-Attention-Based Deep Learning Architectures for Modeling Traffic Dynamics on Lane Graphs[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019: 3898-3905. Link Code

  • James J Q. Online Traffic Speed Estimation for Urban Road Networks with Few Data: A Transfer Learning Approach[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019: 4024-4029. Link

  • Wang Y, Yin H, Chen H, et al. Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 1227-1235. Link

  • Hasanzadeh A, Liu X, Duffield N, et al. Piecewise Stationary Modeling of Random Processes Over Graphs With an Application to Traffic Prediction[C]//2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019: 3779-3788. Link

  • Yoshida A, Yatsushiro Y, Hata N, et al. Practical End-to-End Repositioning Algorithm for Managing Bike-Sharing System[C]//2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019: 1251-1258. Link

  • Opolka F L, Solomon A, Cangea C, et al. Spatio-temporal deep graph infomax[C]. Representation Learning on Graphs and Manifolds, ICLR 2019 Workshop. Link

  • Bai L, Yao L, Kanhere S S, et al. Spatio-Temporal Graph Convolutional and Recurrent Networks for Citywide Passenger Demand Prediction[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM). 2019: 2293-2296. Link

  • Geng X, Li Y, Wang L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33: 3656-3663. Link

  • Bai L, Yao L, Kanhere S S, et al. STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI. 2019: 1981-1987. Link

  • Ge L, Li H, Liu J, et al. Temporal Graph Convolutional Networks for Traffic Speed Prediction Considering External Factors[C]//2019 20th IEEE International Conference on Mobile Data Management (MDM). IEEE, 2019: 234-242. Link

  • Ge L, Li H, Liu J, et al. Traffic Speed Prediction with Missing Data Based on TGCN[C]//2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019: 522-529. Link

  • Ren Y, Xie K. Transfer Knowledge Between Sub-regions for Traffic Prediction Using Deep Learning Method[C]//International Conference on Intelligent Data Engineering and Automated Learning. Springer, Cham, 2019: 208-219. Link

  • Pan Z, Liang Y, Wang W, et al. Urban traffic prediction from spatio-temporal data using deep meta learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 1720-1730. Link Code

Preprint

  • Yu B, Li M, Zhang J, et al. 3d graph convolutional networks with temporal graphs: A spatial information free framework for traffic forecasting[J]. arXiv preprint arXiv:1903.00919, 2019. Link

  • Zhang N, Guan X, Cao J, et al. A Hybrid Traffic Speed Forecasting Approach Integrating Wavelet Transform and Motif-based Graph Convolutional Recurrent Neural Network[J]. arXiv preprint arXiv:1904.06656, 2019. Link

  • Lee K, Rhee W. DDP-GCN: Multi-Graph Convolutional Network for Spatiotemporal Traffic Forecasting[J]. arXiv preprint arXiv:1905.12256, 2019. Link

  • Lee D, Jung S, Cheon Y, et al. Demand Forecasting from Spatiotemporal Data with Graph Networks and Temporal-Guided Embedding[J]. arXiv preprint arXiv:1905.10709, 2019. Link Code

  • Lee K, Rhee W. Graph Convolutional Modules for Traffic Forecasting[J]. arXiv preprint arXiv:1905.12256, 2019. Link

  • Lu M, Zhang K, Liu H, et al. Graph Hierarchical Convolutional Recurrent Neural Network (GHCRNN) for Vehicle Condition Prediction[J]. arXiv preprint arXiv:1903.06261, 2019. Link

  • Shleifer S, McCreery C, Chitters V. Incrementally Improving Graph WaveNet Performance on Traffic Prediction[J]. arXiv preprint arXiv:1912.07390, 2019. Link Code

  • Geng X, Wu X, Zhang L, et al. Multi-modal graph interaction for multi-graph convolution network in urban spatiotemporal forecasting[J]. arXiv preprint arXiv:1905.11395, 2019. Link

  • Zhou X, Shen Y, Huang L. Revisiting Flow Information for Traffic Prediction[J]. arXiv preprint arXiv:1906.00560, 2019. Link

  • Yu B, Yin H, Zhu Z. ST-UNet: A spatio-temporal U-network for graph-structured time series modeling[J]. arXiv preprint arXiv:1903.05631, 2019. Link

2018

Journal

  • Lin L, He Z, Peeta S. Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 258-276. Link

Conference

  • Chai D, Wang L, Yang Q. Bike flow prediction with multi-graph convolutional networks[C]//Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2018: 397-400. Link Code

  • Liao B, Zhang J, Wu C, et al. Deep sequence learning with auxiliary information for traffic prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 537-546. Link Code

  • Li Y, Yu R, Shahabi C, Liu Y, Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting[C], ICLR 2018. Link Code-tensorflow Code-pytorch

  • Zhang, J., Shi, X., Xie, J., Ma, H., King, I., & Yeung, D. (2018). GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs. UAI. Link Code

  • Wu T, Chen F, Wan Y. Graph Attention LSTM Network: A New Model for Traffic Flow Forecasting[C]//2018 5th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2018: 241-245. Link

  • Wang B, Luo X, Zhang F, et al. Graph-Based Deep Modeling and Real Time Forecasting of Sparse Spatio-Temporal Data[C]. MiLeTS’18, London, United Kingdom, 2018. Link

  • Li J, Peng H, Liu L, et al. Graph CNNs for urban traffic passenger flows prediction[C]//2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2018: 29-36. Link Code

  • Mohanty S, Pozdnukhov A. Graph cnn+ lstm framework for dynamic macroscopic traffic congestion prediction[C]//International Workshop on Mining and Learning with Graphs. 2018. Link Code

  • Zhang Q, Jin Q, Chang J, et al. Kernel-Weighted Graph Convolutional Network: A Deep Learning Approach for Traffic Forecasting[C]//2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018: 1018-1023. Link

  • Yu B, Yin H, Zhu Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI. 2018. Link Code1 Code2 Code3

Preprint

  • Wang X, Chen C, Min Y, et al. Efficient metropolitan traffic prediction based on graph recurrent neural network[J]. arXiv preprint arXiv:1811.00740, 2018. Link Code

  • Hu J, Guo C, Yang B, et al. Recurrent Multi-Graph Neural Networks for Travel Cost Prediction[J]. arXiv preprint arXiv:1811.05157, 2018. Link

You might also like...
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

Code for the CIKM 2019 paper
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

A collection of easy-to-use, ready-to-use, interesting deep neural network models
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Trajectory Extraction of road users via Traffic Camera
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Comments
  • Great open-source code

    Great open-source code

    Thank you so much for creating such a marvelous repo! I am wondering whether you could provide some suggestions on good open-source code to study the spatial-temporal GNN modeling of traffic data considering you have great experience in this area?

    opened by TaoRuan-Campus 4
  • Recommending a relevant repo

    Recommending a relevant repo

    Hi,

    Thank you for compiling this good repo and arXiv survey.

    I think my repo would be a good addition to your relevant repo section: https://github.com/aprbw/traffic_prediction

    Thank you.

    Kind regards, Arian Prabowo

    opened by aprbw 1
Owner
null
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 2, 2023
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 2, 2023
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

null 9 Nov 22, 2022