Forecast dynamically at scale with this unique package. pip install scalecast

Overview

πŸŒ„ Scalecast: Dynamic Forecasting at Scale

About

This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels, as well as Facebook Prophet, Microsoft LightGBM and LinkedIn Silverkite models, to forecast time series. Use your own regressors or load the object with its own seasonal, auto-regressive, and other regressors, or combine all of the above. All forecasting is dynamic by default so that auto-regressive terms can be used without leaking data into the test set, setting it apart from other time-series libraries. Dynamic model testing can be disabled to improve model evaluation speed. Differencing to achieve stationarity is built into the library and metrics can be compared across the time series' original level or first or second difference. This library was written to easily apply and compare many forecasts fairly across the same series.

import pandas as pd
import pandas_datareader as pdr
from scalecast import GridGenerator
from scalecast.Forecaster import Forecaster

models = ('mlr','knn','svr','xgboost','elasticnet','mlp','prophet')
df = pdr.get_data_fred('HOUSTNSA',start='2009-01-01',end='2021-06-01')
GridGenerator.get_example_grids()
f = Forecaster(y=df.HOUSTNSA,current_dates=df.index) # to initialize, specify y and current_dates (must be arrays of the same length)
f.set_test_length(12) # specify a test length for your models - do this before eda
f.generate_future_dates(24) # this will create future dates that are on the same interval as the current dates and it will also set the forecast length
f.add_ar_terms(4) # add AR terms before differencing
f.add_AR_terms((2,12)) # seasonal AR terms
f.integrate() # automatically decides if the y term and all ar terms should be differenced to make the series stationary
f.add_seasonal_regressors('month',raw=False,sincos=True) # uses pandas attributes: raw=True creates integers (default), sincos=True creates wave functions
f.add_seasonal_regressors('year')
f.add_covid19_regressor() # dates are flexible, default is from when disney world closed to when US CDC lifted mask recommendations
f.add_time_trend()
f.set_validation_length(6) # length, different than test_length, to tune the hyperparameters 
f.tune_test_forecast(models)
f.plot(order_by='LevelTestSetMAPE',level=True) # plots the forecast

Why switch to Scalecast?

  • Much simpler to set up than a tensorflow neural network
  • Extends scikit-learn regression modeling concepts to be useful for time-series forecasting
    • propogates lagged y terms dynamically
    • differences and undifferences series with ease to model stationary series only
  • Allows comparison of many different modeling concepts, including ARIMA, MLR, MLP, and Prophet so you never have to be in doubt about which model is right for your series
  • Your results and accuracy metrics can always be level, even if you need to difference the series to model it effectively

Installation

  1. pip install scalecast
    • installs the base package and most dependencies
  2. pip install fbprophet
    • only necessary if you plan to forecast with Facebook prophet models
    • to resolve a common installation issue, see this Stack Overflow post
  3. pip install greykite
    • only necessary if you plan to forecast with LinkedIn Silverkite
  4. If using notebook functions:
    • pip install tqdm
    • pip install ipython
    • pip install ipywidgets
    • jupyter nbextension enable --py widgetsnbextension
    • if using Jupyter Lab: jupyter labextension install @jupyter-widgets/jupyterlab-manager

Documentation

Documentation
πŸ“‹ Examples Get straight to the process
➑ Towards Data Science Series Read the 3-part series
πŸ““ Binder Notebook Play with an example in your browser
πŸ› οΈ Change Log See what's changed
πŸ“š Documentation Markdown Files Review all high-level concepts in the library

Contribute

The following contributions are needed (contact [email protected])

  1. Documentation moved to a proper website with better organization
  2. Confidence intervals for all models (need to be consistently derived and able to toggle on/off or at different levels: 95%, 80%, etc.)
  3. Error/issue reporting
Comments
  • ModuleNotFoundError: No module named 'src.scalecast'

    ModuleNotFoundError: No module named 'src.scalecast'

    Failing to install on intel macOS Monterey 12.6. Python 3.10.7 pip 22.2.2

    Tried multiple versions (latest, 0.14.7, 0.13.11 all produce the same results:

    Collecting scalecast Using cached SCALECAST-0.15.1.tar.gz (403 kB) Preparing metadata (setup.py) ... error error: subprocess-exited-with-error

    Γ— python setup.py egg_info did not run successfully. β”‚ exit code: 1 ╰─> [6 lines of output] Traceback (most recent call last): File "", line 2, in File "", line 34, in File "/private/var/folders/0f/m_0sfrcn7c56zl0026b1k62c0000gq/T/pip-install-k0tc2z79/scalecast_d8f7a8ae59984787adfbedc8a557540a/setup.py", line 4, in from src.scalecast.init import version as version ModuleNotFoundError: No module named 'src.scalecast' [end of output]

    bug 
    opened by callmegar 7
  • Is it possible to pickle only trained model and call it back for test and/or forecast without any training process in another .py folder?

    Is it possible to pickle only trained model and call it back for test and/or forecast without any training process in another .py folder?

    I am trying to pickle a trained xgboost model and call it in another .py folder to only do forecast without any training process. Is it possible to do that with auto_forecast() function, if not how can I do that? (code is below)

    """### XGBoost"""

    xgboost_grid = { 'max_depth': [15], 'tree_method': 'gpu_hist' } for i, f in enumerate(forecasts): print('Forecast', i) f.set_estimator('xgboost') f.ingest_grid(xgboost_grid) f.tune() f.auto_forecast()

    question 
    opened by batuhansahincanel 5
  • Possible Bug: f.forecast gives Index error

    Possible Bug: f.forecast gives Index error

    Problem

    This looks to be very promising module. The theta example given in the tutorial runs without error. But when I tried to implement the theta forecasting using this module for my example data, I got the index error for the validation.

    How to fix the IndexError?

    I have created a brand new virtual environment (venv) with python 3.9 and installed darts and scaleforecast.

    Reproducible Example

    import numpy as np
    import pandas as pd
    from scalecast.Forecaster import Forecaster
    
    col_date = 'BillingDate'
    col_val = 'TotWAC'
    
    # data
    url = "https://github.com/bhishanpdl/Shared/blob/master/data/data_scalecast/df_train.csv"
    dfs = pd.read_html(url)
    
    df_train = dfs[0].iloc[:,1:]
    df_train[col_date] = pd.to_datetime(df_train[col_date])
    
    y = df_train[col_val].to_list()
    current_dates = df_train[col_date].to_list()
    
    f = Forecaster(y=y,current_dates=current_dates)
    
    f.set_test_length(.2)
    f.generate_future_dates(90)
    f.set_validation_metric('mape')
    
    from darts.utils.utils import SeasonalityMode, TrendMode, ModelMode
    
    theta_grid = {
        'theta':[0.5,1,1.5,2,2.5,3],
        'model_mode':[
            ModelMode.ADDITIVE,
            ModelMode.MULTIPLICATIVE
        ],
        'season_mode':[
            SeasonalityMode.MULTIPLICATIVE,
            SeasonalityMode.ADDITIVE
        ],
        'trend_mode':[
            TrendMode.EXPONENTIAL,
            TrendMode.LINEAR
        ],
    }
    
    f.set_estimator('theta')
    f.ingest_grid(theta_grid)
    f.cross_validate(k=3)
    f.auto_forecast()
    

    Error

    ---------------------------------------------------------------------------
    IndexError                                Traceback (most recent call last)
    Input In [9], in <cell line: 44>()
         42 f.set_estimator('theta')
         43 f.ingest_grid(theta_grid)
    ---> 44 f.cross_validate(k=3)
         45 f.auto_forecast()
    
    File \venv\py39darts\lib\site-packages\scalecast\Forecaster.py:3422, in Forecaster.cross_validate(self, k, rolling, dynamic_tuning)
       3420 self.grid = grid_evaluated.iloc[:, :-3]
       3421 self.dynamic_tuning = f2.dynamic_tuning
    -> 3422 self._find_best_params(grid_evaluated)
       3423 self.grid_evaluated = grid_evaluated_cv.reset_index(drop=True)
       3424 self.grid = orig_grid
    
    File \venv\py39darts\lib\site-packages\scalecast\Forecaster.py:3434, in Forecaster._find_best_params(self, grid_evaluated)
       3429     best_params_idx = self.grid.loc[
       3430         grid_evaluated["metric_value"]
       3431         == grid_evaluated["metric_value"].max()
       3432     ].index.to_list()[0]
       3433 else:
    -> 3434     best_params_idx = self.grid.loc[
       3435         grid_evaluated["metric_value"]
       3436         == grid_evaluated["metric_value"].min()
       3437     ].index.to_list()[0]
       3438 self.best_params = {
       3439     k: v[best_params_idx]
       3440     for k, v in self.grid.to_dict(orient="series").items()
       3441 }
       3442 self.best_params = {
       3443     k: (
       3444         v
       (...)
       3452     for k, v in self.best_params.items()
       3453 }
    
    IndexError: list index out of range
    

    System Info

    $ pip freeze
    absl-py==1.2.0
    aiohttp==3.8.1
    aiosignal==1.2.0
    argon2-cffi==21.3.0
    argon2-cffi-bindings==21.2.0
    asttokens==2.0.8
    astunparse==1.6.3
    async-timeout==4.0.2
    attrs==22.1.0
    autopep8==1.7.0
    backcall==0.2.0
    beautifulsoup4==4.11.1
    bleach==5.0.1
    cachetools==5.2.0
    catboost==1.0.6
    certifi==2022.6.15
    cffi==1.15.1
    charset-normalizer==2.1.1
    cmdstanpy==1.0.5
    colorama==0.4.5
    convertdate==2.4.0
    cycler==0.11.0
    Cython==0.29.32
    darts==0.21.0
    debugpy==1.6.3
    decorator==5.1.1
    defusedxml==0.7.1
    eli5==0.13.0
    entrypoints==0.4
    ephem==4.1.3
    et-xmlfile==1.1.0
    executing==0.10.0
    fastjsonschema==2.16.1
    flatbuffers==1.12
    fonttools==4.36.0
    frozenlist==1.3.1
    fsspec==2022.7.1
    gast==0.4.0
    google-auth==2.11.0
    google-auth-oauthlib==0.4.6
    google-pasta==0.2.0
    graphviz==0.20.1
    greenlet==1.1.2
    grpcio==1.47.0
    h5py==3.7.0
    hijri-converter==2.2.4
    holidays==0.15
    html5lib==1.1
    idna==3.3
    importlib-metadata==4.12.0
    ipykernel==6.15.1
    ipython==8.4.0
    ipython-genutils==0.2.0
    ipywidgets==8.0.1
    jedi==0.18.1
    Jinja2==3.1.2
    joblib==1.1.0
    jsonschema==4.14.0
    jupyter==1.0.0
    jupyter-client==7.3.4
    jupyter-console==6.4.4
    jupyter-contrib-core==0.4.0
    jupyter-contrib-nbextensions==0.5.1
    jupyter-core==4.11.1
    jupyter-highlight-selected-word==0.2.0
    jupyter-latex-envs==1.4.6
    jupyter-nbextensions-configurator==0.5.0
    jupyterlab-pygments==0.2.2
    jupyterlab-widgets==3.0.2
    keras==2.9.0
    Keras-Preprocessing==1.1.2
    kiwisolver==1.4.4
    korean-lunar-calendar==0.2.1
    libclang==14.0.6
    lightgbm==3.3.2
    llvmlite==0.39.0
    LunarCalendar==0.0.9
    lxml==4.9.1
    Markdown==3.4.1
    MarkupSafe==2.1.1
    matplotlib==3.5.3
    matplotlib-inline==0.1.6
    mistune==2.0.4
    multidict==6.0.2
    nbclient==0.6.6
    nbconvert==7.0.0
    nbformat==5.4.0
    nest-asyncio==1.5.5
    nfoursid==1.0.1
    notebook==6.4.12
    numba==0.56.0
    numpy==1.22.4
    oauthlib==3.2.0
    openpyxl==3.0.10
    opt-einsum==3.3.0
    packaging==21.3
    pandas==1.4.3
    pandas-datareader==0.10.0
    pandocfilters==1.5.0
    parso==0.8.3
    patsy==0.5.2
    pickleshare==0.7.5
    Pillow==9.2.0
    plotly==5.10.0
    pmdarima==2.0.0
    prometheus-client==0.14.1
    prompt-toolkit==3.0.30
    prophet==1.1
    protobuf==3.19.4
    psutil==5.9.1
    pure-eval==0.2.2
    pyasn1==0.4.8
    pyasn1-modules==0.2.8
    pycodestyle==2.9.1
    pycparser==2.21
    pyDeprecate==0.3.2
    Pygments==2.13.0
    PyMeeus==0.5.11
    pyodbc==4.0.34
    pyparsing==3.0.9
    pyrsistent==0.18.1
    python-dateutil==2.8.2
    pytorch-lightning==1.7.2
    pytz==2022.2.1
    pywin32==304
    pywinpty==2.0.7
    PyYAML==6.0
    pyzmq==23.2.1
    qtconsole==5.3.1
    QtPy==2.2.0
    requests==2.28.1
    requests-oauthlib==1.3.1
    rsa==4.9
    SCALECAST==0.13.11
    scikit-learn==1.1.2
    scipy==1.9.0
    seaborn==0.11.2
    Send2Trash==1.8.0
    setuptools-git==1.2
    six==1.16.0
    soupsieve==2.3.2.post1
    SQLAlchemy==1.4.40
    stack-data==0.4.0
    statsforecast==0.6.0
    statsmodels==0.13.2
    tabulate==0.8.10
    tbats==1.1.0
    tenacity==8.0.1
    tensorboard==2.9.1
    tensorboard-data-server==0.6.1
    tensorboard-plugin-wit==1.8.1
    tensorflow==2.9.1
    tensorflow-estimator==2.9.0
    tensorflow-io-gcs-filesystem==0.26.0
    termcolor==1.1.0
    terminado==0.15.0
    threadpoolctl==3.1.0
    tinycss2==1.1.1
    toml==0.10.2
    torch==1.12.1
    torchmetrics==0.9.3
    tornado==6.2
    tqdm==4.64.0
    traitlets==5.3.0
    typing_extensions==4.3.0
    ujson==5.4.0
    urllib3==1.26.12
    watermark==2.3.1
    wcwidth==0.2.5
    webencodings==0.5.1
    Werkzeug==2.2.2
    widgetsnbextension==4.0.2
    wrapt==1.14.1
    xarray==2022.6.0
    xgboost==1.6.2
    yarl==1.8.1
    zipp==3.8.1
    
    
    question 
    opened by bhishanpdl 4
  • Generating future values does not show in plot

    Generating future values does not show in plot

    Hello,

    I am using scalecast for a timeseries project consisting of predicting future asset prices. I am currently deploying my model in production but I cannot generate any future values beyond my testing dataset. At the beginning of my script, I have written "f.generate_future_dates(20)" but the f.plot() method does not return the predictions for the next 20 units.

    Would you please guide me for how to generate and plot these next 20 units?

    Thank you.

    Martin

    question 
    opened by MartinMashalov 4
  • Update export() methods to include CIs more easily + at level=True

    Update export() methods to include CIs more easily + at level=True

    This may already be a feature, but i think some of the export methods could be retooled.

    Specifically, I would like to pull the CIs for test set predictions and forecasts at the level=True.

    export_forecasts_with_cis and export_test set_preds_with_cis don’t currently have a level value to call on according to the docs.

    Additionally, it would be nice to be able to call these dfs in the .export() method. This way, I can more easily call the functions for a list of models.

    enhancement 
    opened by jroy12345 4
  • VECM

    VECM

    Hi Michael,

    VECM has been showing a frequency error when you have gaps in your data. I would like to know if it's possible to correct that for all type of frequency even if we have gaps in the data like other models in scalecast that works well for this cases.

    Best regards,

    Michelle

    bug 
    opened by michellebaugraczyk 3
  • No option to save LSTM model

    No option to save LSTM model

    I trained an LSTM model and couldn't figure out a way to save my model in any format. I've been through all of the docs provided but there's no way to get the job done. Need help.

    enhancement 
    opened by KnightLock 3
  • use_boxcox parameter in holt winters

    use_boxcox parameter in holt winters

    with this grid:

    hwes = { 'trend':['add','mul'], 'seasonal':['add','mul'], 'damped_trend':[True,False], 'initialization_method':[None,'estimated','heuristic'], 'use_boxcox':[True,False], 'seasonal_periods':[168], }

    I get this result which I do not understand as it is True or False:

    `File ~/.local/share/virtualenvs/scalecast-0HQw5DtN/lib/python3.10/site-packages/statsmodels/tsa/holtwinters/model.py:337, in ExponentialSmoothing._boxcox(self) 335 y = boxcox(self._y, self._use_boxcox) 336 else: --> 337 raise TypeError("use_boxcox must be True, False or a float.") 338 return y

    TypeError: use_boxcox must be True, False or a float.`

    I think the issue may be here: File ~/.local/share/virtualenvs/scalecast-0HQw5DtN/lib/python3.10/site-packages/statsmodels/tsa/holtwinters/model.py:291, in ExponentialSmoothing.__init__(self, endog, trend, damped_trend, seasonal, seasonal_periods, initialization_method, initial_level, initial_trend, initial_seasonal, use_boxcox, bounds, dates, freq, missing) 289 self._use_boxcox = use_boxcox 290 self._lambda = np.nan --> 291 self._y = self._boxcox() 292 self._initialize() 293 self._fixed_parameters = {}

    bug 
    opened by callmegar 2
  • Issue when running auto_forecast() or tune_test_forecast() with rf

    Issue when running auto_forecast() or tune_test_forecast() with rf

    Here is the error. Typically I can rerun the codeblock in my notebook and after 1-2 tries it will fix itself.

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    ~\AppData\Local\Temp\ipykernel_3112\911625238.py in <module>
          3     j.ingest_grid(model)
          4     j.cross_validate(dynamic_tuning=26)
    ----> 5     j.auto_forecast()
          6     j.save_summary_stats()
          7     print(model)
    
    ~\AppData\Roaming\Python\Python37\site-packages\scalecast\Forecaster.py in auto_forecast(self, call_me, dynamic_testing, test_only)
    
    ~\AppData\Roaming\Python\Python37\site-packages\scalecast\Forecaster.py in manual_forecast(self, call_me, dynamic_testing, test_only, **kwargs)
    
    ~\AppData\Roaming\Python\Python37\site-packages\scalecast\Forecaster.py in _forecast_sklearn(self, fcster, dynamic_testing, tune, Xvars, normalizer, test_only, **kwargs)
    
    ~\AppData\Roaming\Python\Python37\site-packages\scalecast\Forecaster.py in evaluate_model(scaler, regr, X, y, Xvars, fcst_horizon, future_xreg, dynamic_testing, true_forecast)
    
    ~\Anaconda3\envs\time\lib\site-packages\sklearn\ensemble\_forest.py in fit(self, X, y, sample_weight)
        465                     n_samples_bootstrap=n_samples_bootstrap,
        466                 )
    --> 467                 for i, t in enumerate(trees)
        468             )
        469 
    
    ~\Anaconda3\envs\time\lib\site-packages\joblib\parallel.py in __call__(self, iterable)
       1041             # remaining jobs.
       1042             self._iterating = False
    -> 1043             if self.dispatch_one_batch(iterator):
       1044                 self._iterating = self._original_iterator is not None
       1045 
    
    ~\Anaconda3\envs\time\lib\site-packages\joblib\parallel.py in dispatch_one_batch(self, iterator)
        859                 return False
        860             else:
    --> 861                 self._dispatch(tasks)
        862                 return True
        863 
    
    ~\Anaconda3\envs\time\lib\site-packages\joblib\parallel.py in _dispatch(self, batch)
        777         with self._lock:
        778             job_idx = len(self._jobs)
    --> 779             job = self._backend.apply_async(batch, callback=cb)
        780             # A job can complete so quickly than its callback is
        781             # called before we get here, causing self._jobs to
    
    ~\Anaconda3\envs\time\lib\site-packages\joblib\_parallel_backends.py in apply_async(self, func, callback)
        206     def apply_async(self, func, callback=None):
        207         """Schedule a func to be run"""
    --> 208         result = ImmediateResult(func)
        209         if callback:
        210             callback(result)
    
    ~\Anaconda3\envs\time\lib\site-packages\joblib\_parallel_backends.py in __init__(self, batch)
        570         # Don't delay the application, to avoid keeping the input
        571         # arguments in memory
    --> 572         self.results = batch()
        573 
        574     def get(self):
    
    ~\Anaconda3\envs\time\lib\site-packages\joblib\parallel.py in __call__(self)
        261         with parallel_backend(self._backend, n_jobs=self._n_jobs):
        262             return [func(*args, **kwargs)
    --> 263                     for func, args, kwargs in self.items]
        264 
        265     def __reduce__(self):
    
    ~\Anaconda3\envs\time\lib\site-packages\joblib\parallel.py in <listcomp>(.0)
        261         with parallel_backend(self._backend, n_jobs=self._n_jobs):
        262             return [func(*args, **kwargs)
    --> 263                     for func, args, kwargs in self.items]
        264 
        265     def __reduce__(self):
    
    ~\Anaconda3\envs\time\lib\site-packages\sklearn\utils\fixes.py in __call__(self, *args, **kwargs)
        214     def __call__(self, *args, **kwargs):
        215         with config_context(**self.config):
    --> 216             return self.function(*args, **kwargs)
        217 
        218 
    
    ~\Anaconda3\envs\time\lib\site-packages\sklearn\ensemble\_forest.py in _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose, class_weight, n_samples_bootstrap)
        171 
        172         indices = _generate_sample_indices(
    --> 173             tree.random_state, n_samples, n_samples_bootstrap
        174         )
        175         sample_counts = np.bincount(indices, minlength=n_samples)
    
    ~\Anaconda3\envs\time\lib\site-packages\sklearn\ensemble\_forest.py in _generate_sample_indices(random_state, n_samples, n_samples_bootstrap)
        127 
        128     random_instance = check_random_state(random_state)
    --> 129     sample_indices = random_instance.randint(0, n_samples, n_samples_bootstrap)
        130 
        131     return sample_indices
    
    mtrand.pyx in numpy.random.mtrand.RandomState.randint()
    
    _bounded_integers.pyx in numpy.random._bounded_integers._rand_int32()
    
    TypeError: 'numpy.float64' object cannot be interpreted as an integer
    
    bug 
    opened by jroy12345 2
  • None doesn't work when passed to the 'Xvars' key in a grid and using cross validation

    None doesn't work when passed to the 'Xvars' key in a grid and using cross validation

    When using the cross_validate() function, it throws an error when using None as an argument:

    arima_grid = {
        'order':[
            (1,0,1),
            (1,0,0),
            (0,0,1)
        ],
        'seasonal_order':[
            (1,0,1,7),
            (1,0,0,7),
            (0,0,1,7),
            (0,1,0,7)
        ],
        'Xvars':[
            None,
            [
                'monthsin',
                'monthcos',
                'quartersin',
                'quartercos',
                'dayofyearsin',
                'dayofyearcos',
                'weeksin',
                'weekcos',
            ]
        ],
    }
    
    f.ingest_grid(arima_grid)
    f.cross_validate(k=3) 
    

    image

    bug good first issue 
    opened by uger7 2
  • fbprophet is now named prophet

    fbprophet is now named prophet

    The prophet forecaster still uses the old 'fbprophet' dependency, this has been changed to 'prophet' and installing the previous versions of the library causes some issues if you have the new version/name installed

    opened by callmegar 1
Releases(0.1.4)
Owner
Michael Keith
Data Scientist for Utah Department of Health
Michael Keith
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

null 27 Aug 19, 2022
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

null 16 Sep 23, 2022
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

null 4 Feb 16, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 8, 2023
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla

null 6.2k Jan 1, 2023
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 1, 2023
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

null 154 Dec 17, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 5, 2023
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 7, 2023
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 3, 2023
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" --> "Fronte

Andrea D'Agostino 10 Dec 18, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base learners for the uplift models. Evaluation functions expect a PySpark dataframe as input.

Booking.com 254 Dec 31, 2022
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

null 12 Jun 29, 2022
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

null 57 Dec 21, 2022