PointWOLF: Point Cloud Augmentation with Weighted Local Transformations
This repository is the implementation of PointWOLF(To appear).
Sihyeon Kim1*, Sanghyeok Lee1*, Dasol Hwang1, Jaewon Lee1, Seong Jae Hwang2, Hyunwoo J. Kim1†, Point Cloud Augmentation with Weighted Local Transformations (ICCV 2021).
1Korea University 2University of Pittsburgh
Installation
Dependencies
- CUDA 10.2
- Python 3.7.1
- torch 1.7.0
- packages : sklearn, numpy, h5py, glob
Download
Clone repository
$ git clone https://github.com/mlvlab/PointWOLF.git
Download ModelNet40
Notes : When you run the main.py
, ModelNet40 is automatically downloaded at .../PointWOLF/data/
.
If you want to download dataset on your ${PATH}
, see below.
$ cd ${PATH}
$ wget https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip --no-check-certificate
$ unzip modelnet40_ply_hdf5_2048.zip
$ rm modelnet40_ply_hdf5_2048.zip
Runnig the code
train
- Run the training without PointWOLF & AugTune:
$ python main.py --exp_name=origin --model=dgcnn --num_points=1024 --k=20 --use_sgd=True
- Run the training with PointWOLF:
$ python main.py --exp_name=PointWOLF --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --PointWOLF
- Run the training with PointWOLF & AugTune:
$ python main.py --exp_name=PointWOLF_AugTune --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --PointWOLF --AugTune
eval
- Run the evaluation with trained model located at
${PATH}
:
$ python main.py --exp_name=eval --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --eval=True --model_path=${PATH}
Citation
@InProceedings{Kim_2021_ICCV,
author = {Kim, Sihyeon and Lee, Sanghyeok and Hwang, Dasol and Lee, Jaewon and Hwang, Seong Jae and Kim, Hyunwoo J.},
title = {Point Cloud Augmentation With Weighted Local Transformations},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {548-557}
}
License
Acknowledgement
The structure of this codebase is borrowed from DGCNN.