State-to-Distribution (STD) Model

Related tags

Deep Learning STD
Overview

State-to-Distribution (STD) Model

In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model for a reactive atom-diatom collision system.

Requirements

  • python 3.7
  • TensorFlow 2.4
  • SciKit-learn 0.20

Setting up the environment

We recommend to use Miniconda for the creation of a virtual environment.

Once in miniconda, you can create a virtual enviroment called StD from the .yml file with the following command

conda env create --file StD.yml

On the same file, there is a version of the required packages. Additionally, a .txt file is included, if this is used the necessary command for the creation of the environment is:

conda create --file StD.txt 

To activate the virtual environment use the command:

conda activate StD

You are ready to run the code.

Predict product state distributions

For specific initial conditions

To predict product state distributions for fixed nitial conditions from the test set (77 data sets). Go to the evaluation_InitialCondition folder.

Don't remove (external_plotting directory).

python3 evaluate.py 

The evaluate.py file predicts product state distributions for all initial conditions within the test set and compares them with reference data obtained from quasi-classical trajectory similations (QCT).

Edit the code evaluation.py in the folder evaluation_InitialCondition to specify whether accuracy measures should be calculated based on comparison of the NN predictions and QCT data solely at the grid points where the NN places its predictions (flag "NN") or at all points where QCT data is available (flag "QCT") based on linear interpolation. Then run the code to obtain a file containing the desired accuracy measures, as well as a PDF with the corresponding plots. The evaluations are compared with available QCT data located in QCT_Data/Initial_Condition_Data.

For thermal reactant state dsitributions

To predict product state distributions from thermal reactant state distributions go to the evaluation_Temperature folder.

Edit the code evaluation.py in the folder evaluation_Temperature, to specify which of the four studied cases

  • Ttrans=Trot=Tvib (indices_set1.txt)
  • Ttrans != Tvib =Trot (indices_set2.txt)
  • Ttrans=Tvib != Trot (indices_set3.txt)
  • Ttrans != Tvib != Trot (indices_set4.txt)

you want to analyse.

Then run the code with the following command to obtain a file containing the desired accuracy measures, as well as a PDF with the corresponding plots for three example temperatures.

Don't remove (external_plotting directory).

python3 evaluate.py

The evaluations are compared with the available QCT data in QCT_Data/Temp_Data.

The complete list of temperatures and can be read from the file tinput.dat in data_preprocessing/TEMP/tinput.dat .

Cite as:

Julian Arnold, Debasish Koner, Juan Carlos San Vicente, Narendra Singh, Raymond J. Bemish, and Markus Meuwly,

!*Complete name of paper or do you want to cite the repository? Also, add an email or responsable*
You might also like...
Implementation of
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Pytorch implementation for
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

 PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

Outlier Exposure with Confidence Control for Out-of-Distribution Detection
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Principled Detection of Out-of-Distribution Examples in Neural Networks
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

Owner
MMgroup@unibas
Repository for free and open-source code developed by people from Markus Meuwly's group at university of Basel, Switzerland
MMgroup@unibas
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 3, 2023
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 8, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 5, 2023
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 2, 2023