Query Selector
Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sparse attention Transformer algorithm that is especially suitable for long term time series forecasting
Depencency
Python 3.7.9
deepspeed 0.4.0
numpy 1.20.3
pandas 1.2.4
scipy 1.6.3
tensorboardX 1.8
torch 1.7.1
torchaudio 0.7.2
torchvision 0.8.2
tqdm 4.61.0
Results on ETT dataset
Univariate
Data | Prediction len | Informer MSE | Informer MAE | Trans former MSE | Trans former MAE | Query Selector MSE | Query Selector MAE | MSE ratio |
---|---|---|---|---|---|---|---|---|
ETTh1 | 24 | 0.0980 | 0.2470 | 0.0548 | 0.1830 | 0.0436 | 0.1616 | 0.445 |
ETTh1 | 48 | 0.1580 | 0.3190 | 0.0740 | 0.2144 | 0.0721 | 0.2118 | 0.456 |
ETTh1 | 168 | 0.1830 | 0.3460 | 0.1049 | 0.2539 | 0.0935 | 0.2371 | 0.511 |
ETTh1 | 336 | 0.2220 | 0.3870 | 0.1541 | 0.3201 | 0.1267 | 0.2844 | 0.571 |
ETTh1 | 720 | 0.2690 | 0.4350 | 0.2501 | 0.4213 | 0.2136 | 0.3730 | 0.794 |
ETTh2 | 24 | 0.0930 | 0.2400 | 0.0999 | 0.2479 | 0.0843 | 0.2239 | 0.906 |
ETTh2 | 48 | 0.1550 | 0.3140 | 0.1218 | 0.2763 | 0.1117 | 0.2622 | 0.721 |
ETTh2 | 168 | 0.2320 | 0.3890 | 0.1974 | 0.3547 | 0.1753 | 0.3322 | 0.756 |
ETTh2 | 336 | 0.2630 | 0.4170 | 0.2191 | 0.3805 | 0.2088 | 0.3710 | 0.794 |
ETTh2 | 720 | 0.2770 | 0.4310 | 0.2853 | 0.4340 | 0.2585 | 0.4130 | 0.933 |
ETTm1 | 24 | 0.0300 | 0.1370 | 0.0143 | 0.0894 | 0.0139 | 0.0870 | 0.463 |
ETTm1 | 48 | 0.0690 | 0.2030 | 0.0328 | 0.1388 | 0.0342 | 0.1408 | 0.475 |
ETTm1 | 96 | 0.1940 | 0.2030 | 0.0695 | 0.2085 | 0.0702 | 0.2100 | 0.358 |
ETTm1 | 288 | 0.4010 | 0.5540 | 0.1316 | 0.2948 | 0.1548 | 0.3240 | 0.328 |
ETTm1 | 672 | 0.5120 | 0.6440 | 0.1728 | 0.3437 | 0.1735 | 0.3427 | 0.338 |
Multivariate
Data | Prediction len | Informer MSE | Informer MAE | Trans former MSE | Trans former MAE | Query Selector MSE | Query Selector MAE | MSE ratio |
---|---|---|---|---|---|---|---|---|
ETTh1 | 24 | 0.5770 | 0.5490 | 0.4496 | 0.4788 | 0.4226 | 0.4627 | 0.732 |
ETTh1 | 48 | 0.6850 | 0.6250 | 0.4668 | 0.4968 | 0.4581 | 0.4878 | 0.669 |
ETTh1 | 168 | 0.9310 | 0.7520 | 0.7146 | 0.6325 | 0.6835 | 0.6088 | 0.734 |
ETTh1 | 336 | 1.1280 | 0.8730 | 0.8321 | 0.7041 | 0.8503 | 0.7039 | 0.738 |
ETTh1 | 720 | 1.2150 | 0.8960 | 1.1080 | 0.8399 | 1.1150 | 0.8428 | 0.912 |
ETTh2 | 24 | 0.7200 | 0.6650 | 0.4237 | 0.5013 | 0.4124 | 0.4864 | 0.573 |
ETTh2 | 48 | 1.4570 | 1.0010 | 1.5220 | 0.9488 | 1.4074 | 0.9317 | 0.966 |
ETTh2 | 168 | 3.4890 | 1.5150 | 1.6225 | 0.9726 | 1.7385 | 1.0125 | 0.465 |
ETTh2 | 336 | 2.7230 | 1.3400 | 2.6617 | 1.2189 | 2.3168 | 1.1859 | 0.851 |
ETTh2 | 720 | 3.4670 | 1.4730 | 3.1805 | 1.3668 | 3.0664 | 1.3084 | 0.884 |
ETTm1 | 24 | 0.3230 | 0.3690 | 0.3150 | 0.3886 | 0.3351 | 0.3875 | 0.975 |
ETTm1 | 48 | 0.4940 | 0.5030 | 0.4454 | 0.4620 | 0.4726 | 0.4702 | 0.902 |
ETTm1 | 96 | 0.6780 | 0.6140 | 0.4641 | 0.4823 | 0.4543 | 0.4831 | 0.670 |
ETTm1 | 288 | 1.0560 | 0.7860 | 0.6814 | 0.6312 | 0.6185 | 0.5991 | 0.586 |
ETTm1 | 672 | 1.1920 | 0.9260 | 1.1365 | 0.8572 | 1.1273 | 0.8412 | 0.946 |
State Of Art
Citation
@misc{klimek2021longterm,
title={Long-term series forecasting with Query Selector -- efficient model of sparse attention},
author={Jacek Klimek and Jakub Klimek and Witold Kraskiewicz and Mateusz Topolewski},
year={2021},
eprint={2107.08687},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Contact
If you have any questions please contact us by email - [email protected]