Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

Overview

ALPHAMEPOL

This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

Installation

In order to use this codebase you need to work with a Python version >= 3.6. Moreover, you need to have a working setup of Mujoco with a valid Mujco license. To setup Mujoco, have a look here. To avoid any conflict with your existing Python setup, and to keep this project self-contained, it is suggested to work in a virtual environment with virtualenv. To install virtualenv:

pip install --upgrade virtualenv

Create a virtual environment, activate it and install the requirements:

virtualenv venv
source venv/bin/activate
pip install -r requirements.txt

Usage

Unsupervised Pre-Training

To reproduce the Unsupervised Pre-Training experiments in the paper, run:

./scripts/exploration/[gridworld_with_slope.sh | multigrid.sh | ant.sh | minigrid.sh]

Supervised Fine-Tuning

To reproduce the Supervised Fine-Tuning experiments, run:

./scripts/goal_rl/[gridworld_with_slope.sh | multigrid.sh | ant.sh | minigrid.sh]

By default, this will launch TRPO with ALPHAMEPOL initialization. To launch TRPO with a random initialization, simply omit the policy_init argument in the scripts.

Moreover, note that the scripts for the GridWorld with Slope and MultiGrid experiments have the argument num_goals = 50, meaning that the training will be performed with one goal at a time. If you want to speed up the process, you can use several processes (ideally one for each goal), by passing as argument num_goals = 1 and changing incrementally the seed. As regards the Ant and MiniGrid experiments, since the goals are predefined, you can also set the goal_index argument to specify a goal (from 0 to 7 and from 0 to 12 respectively).

Results Visualization

Once launched, each experiment will log statistics in the results folder. You can visualize everything by launching tensorboard targeting that directory:

python -m tensorboard.main --logdir=./results --port 8080

and visiting the board at http://localhost:8080.

You might also like...
Official implementation of the network presented in the paper
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

Owner
null
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI Gym toolkit.

Robin Henry 99 Dec 12, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 4, 2023
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 3, 2023
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 3, 2023
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 4, 2020
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 2, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 2, 2022