The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

Overview

ASMA-GAN

Anisotropic Stroke Control for Multiple Artists Style Transfer

Proceedings of the 28th ACM International Conference on Multimedia

The official repository with Pytorch

[Arxiv paper]

logo

title

Methodology

Framework

Dependencies

  • python3.6+
  • pytorch1.5+
  • torchvision
  • pyyaml
  • paramiko
  • pandas
  • requests
  • tensorboard
  • tensorboardX
  • tqdm

Installation

We highly recommend you to use Anaconda for installation

conda create -n ASMA python=3.6
conda activate ASMA
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch
pip install pyyaml paramiko pandas requests tensorboard tensorboardX tqdm

Preparation

  • Traning dataset
    • Coming soon
  • pre-trained model
    • Download the model from Github Releases, and unzip the files to ./train_logs/

Usage

To test with pretrained model

The command line below will generate 1088*1920 HD style migration pictures of 11 painters for each picture of testImgRoot (11 painters include: Berthe Moriso , Edvard Munch, Ernst Ludwig Kirchner, Jackson Pollock, Wassily Kandinsky, Oscar-Claude Monet, Nicholas Roerich, Paul Cézanne, Pablo Picasso ,Samuel Colman, Vincent Willem van Gogh. The output image(s) can be found in ./test_logs/ASMAfinal/

  • Example of style transfer with all 11 artists style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle -1 
  • Example of style transfer with Pablo Picasso style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 8 
  • Example of style transfer with Wassily Kandinsky style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 4

--version refers to the ASMAGAN training logs name.

--testImgRoot can be a folder with images or the path of a single picture.You can assign the image(s) you want to perform style transfer to this argument.

--specify_sytle is used to specify which painter's style is used for style transfer. When the value is -1, 11 painters' styles are used for image(s) respectively for style transfer. The values corresponding to each painter's style are as follows [0: Berthe Moriso, 1: Edvard Munch, 2: Ernst Ludwig Kirchner, 3: Jackson Pollock, 4: Wassily Kandinsky, 5: Oscar-Claude Monet, 6: Nicholas Roerich, 7: Paul Cézanne, 8: Pablo Picasso, 9 : Samuel Colman, 10: Vincent Willem van Gogh]

Training

Coming soon

To cite our paper

@inproceedings{DBLP:conf/mm/ChenYLQN20,
  author    = {Xuanhong Chen and
               Xirui Yan and
               Naiyuan Liu and
               Ting Qiu and
               Bingbing Ni},
  title     = {Anisotropic Stroke Control for Multiple Artists Style Transfer},
  booktitle = {{MM} '20: The 28th {ACM} International Conference on Multimedia, 2020},
  publisher = {{ACM}},
  year      = {2020},
  url       = {https://doi.org/10.1145/3394171.3413770},
  doi       = {10.1145/3394171.3413770},
  timestamp = {Thu, 15 Oct 2020 16:32:08 +0200},
  biburl    = {https://dblp.org/rec/conf/mm/ChenYLQN20.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Some Results

Results1

Related Projects

Learn about our other projects [RainNet], [Sketch Generation], [CooGAN], [Knowledge Style Transfer], [SimSwap],[ASMA-GAN],[Pretrained_VGG19].

High Resolution Results

Comments
  • Can't download pre-trained model

    Can't download pre-trained model

    Hi! Could you please check your pre-trained model. The follow links is no found. Thank you https://github.com/neuralchen/ASMAGAN/releases/download/v.1.0/ASMAfinal.zip

    opened by namdn 5
  • Thank you for your great project. When will the training code be released

    Thank you for your great project. When will the training code be released

    Thank you for your great project.

    1. When will the training code be released.
    2. I want to get more painters how do I do that, how do I make the training datasets, how much data do I need
    3. Looking forward to your reply
    opened by zhanghongyong123456 5
  • Fine Tuning for single class

    Fine Tuning for single class

    Hello team, I would like to finetune your pretrained model for just five new class (total output will be five), how should I use the finetune? Thank you!

    opened by minhtcai 0
  • KeyError 1920

    KeyError 1920

    using the official command: python main.py --mode test --cuda 0 --version ASMAfinal --dataloader_workers 8 --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 8

    then error happened Generator Script Name: Conditional_Generator_asm 11 classes Finished preprocessing the test dataset, total image number: 25... /home/ama/anaconda3/envs/ASMA/lib/python3.9/site-packages/torchvision/transforms/transforms.py:332: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum. warnings.warn( Traceback (most recent call last): File "/home/ama/ASMAGAN/main.py", line 266, in tester.test() File "/home/ama/ASMAGAN/test_scripts/tester_common_useage.py", line 50, in test test_data = TestDataset(test_img,batch_size) File "/home/ama/ASMAGAN/data_tools/test_data_loader_resize.py", line 36, in init transform.append(T.Resize(1088,1920)) File "/home/ama/anaconda3/envs/ASMA/lib/python3.9/site-packages/torchvision/transforms/transforms.py", line 336, in init interpolation = _interpolation_modes_from_int(interpolation) File "/home/ama/anaconda3/envs/ASMA/lib/python3.9/site-packages/torchvision/transforms/functional.py", line 47, in _interpolation_modes_from_int return inverse_modes_mapping[i] KeyError: 1920

    opened by Kayce001 1
  • Change aspect ratio of images

    Change aspect ratio of images

    test code change aspect ratio of input images so output images are deformed to fix this i make some correction at "test_data_loader_resize.py"

    image

    opened by birolkuyumcu 0
  • RuntimeError: cuDNN

    RuntimeError: cuDNN

    Hi I get the following error when running the code:

    RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED when calling backward()

    I would appreciate your help on how to resolve this.

    Thank you!

    Gero

    opened by Limbicnation 8
Releases(v.1.1)
Owner
Six_God
Six_God
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 3, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 6, 2023
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 1, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

null 442 Dec 16, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

null 123 Dec 27, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

null 60 Oct 12, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 4, 2023
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 4, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

null 75 Dec 16, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

null 444 Dec 30, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 3, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

null 770 Jan 2, 2023
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 6, 2023
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022