A Factor Model for Persistence in Investment Manager Performance

Overview

Factor-Model-Manager-Performance

A Factor Model for Persistence in Investment Manager Performance

I apply methods and processes similar to those used in the following paper in Iran. I show that the results regarding managers' behavior do not hold true in Iran.

Nicolas P. B. Bollen, Jeffrey A. Busse, Short-Term Persistence in Mutual Fund Performance, The Review of Financial Studies, Volume 18, Issue 2, Summer 2005, Pages 569–597, https://doi.org/10.1093/rfs/hhi007

You might also like...
FedScale: Benchmarking Model and System Performance of Federated Learning
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

Prometheus exporter for Cisco Unified Computing System (UCS) Manager
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

ML-Ensemble – high performance ensemble learning
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Owner
Omid Arhami
Currently, a graduate business and engineering student looking for a Ph.D. position in Operations Management, Statistics, Data Science, or related area.
Omid Arhami
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 1, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 3, 2023
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 2.8k Feb 12, 2021
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

null 3 May 1, 2022