DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

Overview

DI-HPC: Decision Intelligence - High Performance Computation

DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms, such as GAE, n-step TD and LSTM, etc. The operators support forward and backward propagation, and can be used in training, data collection, and test modules.

Requirements

  • CUDA 9.2
  • PyTorch 1.5 (recommend)
  • python 3.6.9
  • Linux Platform

Note: We recommend that DI-HPC and DI-Engine share the same environment, and it should be fine with PyTorch from 1.3.1 to 1.8.

Quick Start

Install from whl

The easiest way to get DI-HPC is to use pip, and you can get .whl from

and then call

$ pip install 

Install from source code

Alternatively you can install latest DI-HPC from git master branch:

$ python3 setup.py install

Run on Linux

You will get benchmark result by following commands:

$ python3 tests/test_gae.py
You might also like...
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

Comments
Owner
OpenDILab
Open sourced Decision Intelligence (DI)
OpenDILab
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 3, 2023
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 6, 2022
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

null 61.4k Jan 4, 2023
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

null 46.1k Feb 13, 2021
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 6, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

null 2 Sep 20, 2022