Automatic Image Background Subtraction

Overview

Automatic Image Background Subtraction

GitHub License Python Version

This repo contains set of scripts for automatic one-shot image background subtraction task using the following strategies:

  1. the appropriate background subtraction services (mostly human based):
  1. U-Net human segmentation net + CascadePSP refinement net:
  2. BackgroundMattingV2 net.

Installation

git clone https://github.com/osmr/bgsub.git
cd bgsub
pip install -r requirements.txt

Usage

  1. Launch a script for background subtraction via benzin.io/remove.bg service:
python subtract_bg_service.py --service=<service> --token=<your token> --input=<directory with images> --output=<output directory with binary masks>

Here:

  • service is benzinio for benzin.io service or removebg for remove.bg,
  • token is a service API token value, which you will receive after registering on the selected service,
  • input is a directory with processing JPEG images (can contain subdirectories),
  • output is a directory with resulted PNG binary masks (it is assumed that all original images had unique names).

Optional parameters:

  • middle is a directory with intermediate images with original masks obtained from the service (PNG with alpha mask),
  • ppdir is a flag for adding extra parrent+parrent directory to the output one (should use as --ppdir).
  • threshold is a threshold for mask binarization (default value is 127),
  • url is an optional custom URL for service,
  • jpg is a flag for forced recompression an input image as JPG (should use as --jpg),
  • not-resize is a flag for suppressing forcible scale the mask to the input image (should use as --not-resize).
  1. Launch a script for background subtraction via human segmentation network:
python subtract_bg_human.py --input=<directory with images> --output=<output directory with binary masks>

Here:

  • input is a directory with processing JPEG images (can contain subdirectories),
  • output is a directory with resulted PNG binary masks (it is assumed that all original images had unique names).

Optional parameters:

  • ppdir is a flag for adding extra parrent+parrent directory to the output one (should use as --ppdir).
  • use-cuda is a flag for using CUDA for network inference (should use as --use-cuda).
  1. Launch a script for background subtraction via matting network:
python subtract_bg_matting.py --input=<directory with images> --bg=<background image path> --output=<output directory with binary masks>

Here:

  • input is a directory with processing JPEG images (can contain subdirectories),
  • bg is a background image file path,
  • output is a directory with resulted PNG binary masks (it is assumed that all original images had unique names).

Optional parameters:

  • threshold is a threshold for mask binarization (default value is 127),
  • ppdir is a flag for adding extra parrent+parrent directory to the output one (should use as --ppdir).
  • use-cuda is a flag for using CUDA for network inference (should use as --use-cuda).

Remark

The script does not recalculate the masks if the target images already exist.

You might also like...
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

โšพ๐Ÿค–โšพ Automatic baseball pitching overlay in realtime
โšพ๐Ÿค–โšพ Automatic baseball pitching overlay in realtime

โšพ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

DNA-RECON { Automatic Web Reconnaissance Tool }
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

automatic color-grading
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

Owner
Oleg Sรฉmery
Mathematician
Oleg Sรฉmery
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. ?? https:

Gaurav 16 Oct 29, 2022
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker ์ž๋™์œผ๋กœ ์ž๊ฐ€์ง„๋‹จ ํ•ด์ฃผ๋Š” ํ”„๋กœ๊ทธ๋žจ(python ํ•„์š”) ์ค‘์š” ์ด ํ”„๋กœ๊ทธ๋žจ์ด ์‹คํ–‰๋ ๋•Œ์—๋Š” ์ ˆ๋Œ€๋กœ ๋งˆ์šฐ์Šคํฌ์ธํ„ฐ๋ฅผ ์›€์ง์ด๊ฑฐ๋‚˜ ํ‚ค๋ณด๋“œ๋ฅผ ๊ฑด๋“œ๋ฆฌ๋ฉด ์•ˆ๋œ๋‹ค(ํ™”๋ฉด์ธ์‹, ๋งˆ์šฐ์Šคํฌ์ธํ„ฐ๋กœ ์ง์ ‘ ํด๋ฆญ) ์‚ฌ์šฉ๋ฒ• ํ”„๋กœ๊ทธ๋žจ์„ ๊ตฌ๋™ํ•  ํด๋” ๋‚ด์˜ cmd์ฐฝ์—์„œ pip

null 1 Dec 30, 2021
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 3, 2023
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

null 35 Jan 6, 2023
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 7, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 6, 2023
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022