Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

Overview

GINC small-scale in-context learning dataset

GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context learning. The pretraining data is generated by a mixture of HMMs and the in-context learning prompt examples are also generated from HMMs (either from the mixture or not). The prompt examples are out-of-distribution with respect to the pretraining data since every example is independent, concatenated, and separated by delimiters. We provide code to generate GINC-style datasets of varying vocabulary sizes, number of HMMs, and other parameters.

Quickstart

Please create a conda environment or virtualenv using the information in conda-env.yml, then install transformers by going into the transformers/ directory and running pip install -e .. Modify consts.sh to change the default output locations and insert code to activate the environment of choice. Run scripts/runner.sh to run all the experiments on sbatch.

Explore the data

The default dataset has vocab size 50 and the pretraining data is generated as a mixture of 5 HMMs. The pretraining dataset is in data/GINC_trans0.1_start10.0_nsymbols50_nvalues10_nslots10_vic0.9_nhmms10/train.json while in-context prompts are in data/GINC_trans0.1_start10.0_nsymbols50_nvalues10_nslots10_vic0.9_nhmms10/id_prompts_randomsample_*.json.

This repo contains the experiments for the paper An Explanation of In-context Learning as Implicit Bayesian Inference. If you found this repo useful, please cite

@article{xie2021incontext,
  author = {Sang Michael Xie and Aditi Raghunathan and Percy Liang and Tengyu Ma},
  journal = {arXiv preprint arXiv:2111.02080},
  title = {An Explanation of In-context Learning as Implicit Bayesian Inference},
  year = {2021},
}
You might also like...
This is the dataset and code release of the OpenRooms Dataset.
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

LSTM model trained on a small dataset of 3000 names written in PyTorch
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is not encountered.

Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

A large-scale video dataset for the training and evaluation of 3D human pose estimation models
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

A large-scale video dataset for the training and evaluation of 3D human pose estimation models
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30 sports-related actions each, for a total of 510 action clips.

A large-scale face dataset for face parsing, recognition, generation and editing.
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

Code to reproduce the experiments in the paper
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Owner
P-Lambda
P-Lambda
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile <- Makefile with co

Federico Baldassarre 31 Sep 25, 2021
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

null 20 Dec 27, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

null 401 Dec 23, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 4, 2023
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 5, 2023
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 7, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 3, 2023
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022