In the AI for TSP competition we try to solve optimization problems using machine learning.

Overview

AI for TSP Competition

Goal

In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted at the Data Science meets Optimization workshop at IJCAI21 and consists of two tracks:

  • Online supervised learning using surrogate models
  • Reinforcement learning

The goal of this competition is to strengthen the relation between the machine learning field and the optimization field. You can learn more about the competition here.

Prizes

Cash prizes will be announced soon!

Timeline

  • May 7: Start of the tryout period
  • May 21: Competition start
  • July 5: Submission deadline (validation)
  • July 12: Submission deadline (test)
  • August 9: Winners are contacted privately
  • August 21/22: Public announcement of winners

Whitepaper

For more details about the competition, please refer to this document.

Official Documentation

Check out our Documentation

Announcements

Check out our Announcements

FAQ

Check out our FAQ

Slack Channel

Check out our Slack Channel

Dependencies

  • Python=3.8 (should be OK with v >= 3.6)
  • PyTorch=1.8 (track 2 only)
  • Numpy=1.20
  • bayesian-optimization=1.1.0 (track 1 only)
  • Pandas=1.2.4
  • Conda=4.8.4 (optional)

Please check environment.yml

Acknowledgments

Special thanks to https://github.com/pemami4911/neural-combinatorial-rl-pytorch for the implemetation of Neural CO used as part of this repository.

You might also like...
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

 Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

Code for
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Official PyTorch implementation of
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Official code for ICCV2021 paper
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

(ICCV 2021) Official code of
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

 Simulated garment dataset for virtual try-on
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Comments
  • can't run baseline_rl.py

    can't run baseline_rl.py

    I wasn't able to run the baseline_rl.py. When I run the code with from_file=True, and providing x_dir and adj_dir,

    • First, I got a file not found error for the adj file. I guess this occurs as adj files start with adj- in the validation set. However, this is not specified in batch_env_rl.
    • Even though I rename the adj file with the same name of the x file, I got the following error on line 44 of 'batch_env_rl', 'ValueError: could not broadcast input array from shape (20,3) into shape (50,3)', which seems that the number of nodes are not read from file, instead, read n_nodes argument in the constructor.
    • After passing 'n_nodes' argument with 'from_file=True', I still got the error Sizes of tensors must match except in dimension 1. Got 32 and 1 in dimension 0 (The offending index is 1) on line 54 in 'train_baseline.py'.
    opened by cihantugrulcicek 4
  • Missing time-window invalidates feasibility?

    Missing time-window invalidates feasibility?

    https://github.com/paulorocosta/ai-for-tsp-competition/blob/b71ac882125e241c39836494ad41b97bfce2d4fb/op_utils/op.py#L85

    When a time-window is missed, shouldn't the feasibility remain True?

    opened by hennimohammed 1
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 1, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 9, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

null 20 Dec 9, 2021
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 1, 2023