Simple embedded in memory json database

Overview

Build Status Coverage Version Supported Downloads License

dbj

dbj is a simple embedded in memory json database.

It is easy to use, fast and has a simple query language.

The code is fully documented, tested and beginner friendly.

Only the standard library is used and it works on Python 2.7, Python 3.4+, PyPy 2.7 and PyPy 3.6.

Usage

>> r = db.find('name == "John" or name == "Bob" and age > 10') >>> db.getmany(r) [{'name': 'Bob', 'age': 30}, {'name': 'John', 'age': 18}] >>> # Sort the result by age >>> r = db.sort(r, 'age') >>> db.getmany(r) [{'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}] >>> # Sort can also be used from find directly >>> r = db.find('age >= 10', sortby='age') >>> db.getmany(r) [{'name': 'Ana Beatriz', 'age': 10}, {'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}] >>> # One-liner: >>> db.getmany(db.find('age >= 10', sortby='age')) [{'name': 'Ana Beatriz', 'age': 10}, {'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}] >>> db.save() True">
>>> from dbj import dbj
>>> db = dbj('mydb.json')

>>> # Insert using an auto generated uuid1 key
>>> db.insert({'name': 'John', 'age': 18})
'a71d90ce0c7611e995faf23c91392d78'

>>> # Insert using a supplied key, in this case '[email protected]'
>>> user = {'name': 'Ana Beatriz', 'age': 10}
>>> db.insert(user, '[email protected]')
'[email protected]'

>>> db.insert({'name': 'Bob', 'age': 30})
'cc6ddfe60c7611e995faf23c91392d78'

>>> db.get('a71d90ce0c7611e995faf23c91392d78')
{'name': 'John', 'age': 18}

>>> db.get('[email protected]')
{'name': 'Ana Beatriz', 'age': 10}

>>> db.find('age >= 18')
['a71d90ce0c7611e995faf23c91392d78', 'cc6ddfe60c7611e995faf23c91392d78']

>>> db.find('name == "ana beatriz"')
['[email protected]']

>>> r = db.find('name == "John" or name == "Bob" and age > 10')
>>> db.getmany(r)
[{'name': 'Bob', 'age': 30}, {'name': 'John', 'age': 18}]

>>> # Sort the result by age
>>> r = db.sort(r, 'age')
>>> db.getmany(r)
[{'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}]

>>> # Sort can also be used from find directly
>>> r = db.find('age >= 10', sortby='age')
>>> db.getmany(r)
[{'name': 'Ana Beatriz', 'age': 10}, {'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}]

>>> # One-liner:
>>> db.getmany(db.find('age >= 10', sortby='age'))
[{'name': 'Ana Beatriz', 'age': 10}, {'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}]

>>> db.save()
True

Install

Install using pip:

$ pip install dbj

Examples

Check the available commands for a full list of supported methods.

Import the module and create a new database:

>>> from dbj import dbj
>>> db = dbj('mydb.json')

Insert a few documents with auto generated key:

>>> doc = {'name': 'John Doe', 'age': 18}
>>> db.insert(doc)
'7a5ebd420cb211e98a0ff23c91392d78'

>>> docs = [{'name': 'Beatriz', 'age': 30}, {'name': 'Ana', 'age': 10}]
>>> db.insertmany(docs)
2

Insert with a supplied key:

>>> doc = {'name': 'john', 'age': 20, 'country': 'Brasil'}
>>> db.insert(doc, '1')
1

>>> db.insert({'name': 'Bob', 'age': 40}, '2')
2

>>> db.getallkeys()
['7a5ebd420cb211e98a0ff23c91392d78', 'db21baf80cb211e98a0ff23c91392d78', 'db21edde0cb211e98a0ff23c91392d78', '1', '2']

Pop and delete:

>>> db.delete('1')
True

>>> db.poplast()
{'name': 'Bob', 'age': 40}

>>> db.size()
3

>>> db.getallkeys()
['7a5ebd420cb211e98a0ff23c91392d78', 'db21baf80cb211e98a0ff23c91392d78', 'db21edde0cb211e98a0ff23c91392d78']

Updating an existing document:

>>> db.insert({'name': 'Ethan', 'age': 40}, '1000')
'1000'

>>> db.get('1000')
{'name': 'Ethan', 'age': 40}

>>> db.update('1000', {'age': 50})
True

>>> db.get('1000')
{'name': 'Ethan', 'age': 50}

>>> db.update('1000', {'name': 'Ethan Doe', 'gender': 'male'})
True

>>> db.pop('1000')
{'name': 'Ethan Doe', 'age': 50, 'gender': 'male'}

Retrieving some documents:

>>> db.getall()
[{'name': 'John Doe', 'age': 18}, {'name': 'Beatriz', 'age': 30}, {'name': 'Ana', 'age': 10}]

>>> db.getfirst()
{'name': 'John Doe', 'age': 18}

>>> db.getlast()
{'name': 'Ana', 'age': 10}

>>> db.getrandom() # returns a random document
{'name': 'Ana', 'age': 10}

Check for existance:

>>> db.exists('7a5ebd420cb211e98a0ff23c91392d78')
True

Searchin and sorting:

>> db.getmany(r) [{'name': 'John Doe', 'age': 18}] >>> query = 'name == "john doe" or name == "ana" and age >= 10' >>> r = db.find(query) >>> db.getmany(r) [{'name': 'John Doe', 'age': 18}, {'name': 'Ana', 'age': 10}] >>> r = db.find('age < 40', sortby='age') >>> db.getmany(r) [{'name': 'Ana', 'age': 10}, {'name': 'John Doe', 'age': 18}, {'name': 'Beatriz', 'age': 30}]">
>>> r = db.sort(db.getallkeys(), 'name')
>>> db.getmany(r)
[{'name': 'Ana', 'age': 10}, {'name': 'Beatriz', 'age': 30}, {'name': 'John Doe', 'age': 18}]

>>> r = db.find('name ?= "john"')
>>> db.getmany(r)
[{'name': 'John Doe', 'age': 18}]

>>> query = 'name == "john doe" or name == "ana" and age >= 10'
>>> r = db.find(query)
>>> db.getmany(r)
[{'name': 'John Doe', 'age': 18}, {'name': 'Ana', 'age': 10}]

>>> r = db.find('age < 40', sortby='age')
>>> db.getmany(r)
[{'name': 'Ana', 'age': 10}, {'name': 'John Doe', 'age': 18}, {'name': 'Beatriz', 'age': 30}]

Save the database to disk:

>>> db.save()
True

To save a prettified json, use indent:

>>> db.save(indent=4)
True

Enable auto saving to disk after a insert, update or delete:

>>> db = dbj('mydb.json', autosave=True)

About the simple query language

The query for the find command uses the following pattern:

field operator value and/or field operator value...

Spaces are mandatory and used as a separator by the parser. For example, the following query will not work:

name=="John" and age >=18

A valid example:

name == "John Doe" and age >= 18

Strings must be enclosed by quotes. Quoted text can be searched using double quotes as the string delimiter, like:

name == ""Bob "B" Lee""

Please note that if value is a string, a search for text will be executed (using the string operatos below) and if value is a number, a number comparison search will be used.

The supported string operators are:

'==' -> Exact match. 'John' will not match 'John Doe' but will match 'john'
by default. If case sensitive is desired, just use find with sens=True. See
available commands below for the full find method signature.

'?=' -> Partial match. In this case, 'John' will match 'John Doe'.

'!=' -> Not equal operator.

The numbers comparison operators are:

'==', '!=', '<', '<=', '>', '>='

The supported logical operatos are:

and, or

Important changes

0.1.4:

  • The insert() method will raise a TypeError exception if the document dict is not json serializable.

Performance

Since the entire database is an OrderedDict in memory, performance is pretty good. On a cheap single core VM it can handle dozens of thousands operations per second.

A simple benchmark is included to get a roughly estimative of operations per second. Here is the result on a $5 bucks Linode VM running on Python 3.6:

$ python3.6 bench_dbj.py

--------------------------------

Inserting 100000 documents using auto generated uuid1 key...
Done! Time spent: 3.23s
Inserted: 100000
Rate: 30995 ops/s

--------------------------------

Clearing the database...
Done!

--------------------------------

Inserting 100000 documents using a supplied key...
Done! Time spent: 1.26s
Inserted: 100000
Rate: 79587 ops/s

--------------------------------

Retrieving 100000 documents one at a time...
Done! Time spent: 1.61s
Retrieved: 100000
Rate: 62136 ops/s

--------------------------------

Saving database to disk...
Done! Time spent: 1.09s

--------------------------------

Deleting 100000 documents one at a time...
Done! Time spent: 0.22s
Deleted: 100000
Rate: 450764 ops/s

--------------------------------

Removing file...
Done!

Peak memory usage: 57.37 MB

Available commands

insert(document, key=None) -> Create a new document on database.
Args:
document (dict): The document to be created.
key (str, optional): The document unique key. Defaults to uuid1.
Returns:
The document key.
insertmany(documents) -> Insert multiple documents on database.
Args:
documents (list): List containing the documents to insert.
Returns:
Number of inserted documents.
save(indent=None) -> Save database to disk.
Args:
indent (int or str, optional): If provided, save a prettified json with that indent level. 0, negative or "" will only insert newlines.
Returns:
True if successful.
clear() -> Remove all documents from database.
Returns:
True if successful.
size() -> Return the database size.
Returns:
Number of documents on database.
exists(key) -> Check if a document exists on database.
Args:
key (str): The document key.
Returns:
True or False if it does not exist.
delete(key) -> Delete a document on database.
Args:
key (str): The document key.
Returns:
True or False if it does not exist.
deletemany(keys) -> Delete multiple documents on database.
Args:
keys (list): List containing the keys of the documents to delete.
Returns:
Number of deleted documents.
update(key, values) -> Add/update values on a document.
Args:
key (str): The document key.
values (dict): The values to be added/updated.
Returns:
True or False if document does not exist.
updatemany(keys, values) -> Add/update values on multiple documents.
Args:
keys (list): List containing the keys of the documents to update.
values (dict): The values to be added/updated.
Returns:
Number of updated documents.
get(key) -> Get a document on database.
Args:
key (str): The document key.
Returns:
The document or False if it does not exist.
getmany(keys) -> Get multiple documents from database.
Args:
keys (list): List containing the keys of the documents to retrieve.
Returns:
List of documents.
getall() -> Return a list containing all documents on database.
Returns:
List with all database documents.
getallkeys() -> Return a list containing all keys on database.
Returns:
List with all database keys.
getrandom() -> Get a random document on database.
Returns:
A document or False if database is empty.
getfirst() -> Get the first inserted document on database.
Returns:
The first inserted document or False if database is empty.
getlast() -> Get the last inserted document on database.
Returns:
The last inserted document or False if database is empty.
getfirstkey() -> Get the first key on database.
Returns:
The first key or False if database is empty.
getlastkey() -> Get the last key on database.
Returns:
The last key or False if database is empty.
pop(key) -> Get the document from database and remove it.
Args:
key (str): The document key.
Returns:
The document or False if it does not exist.
popfirst() -> Get the first inserted document on database and remove it.
Returns:
The first inserted document or False if database is empty.
poplast() -> Get the last inserted document on database and remove it.
Returns:
The last inserted document or False if database is empty.
sort(keys, field, reverse=False) -> Sort the documents using the field provided.
Args:
keys (list): List containing the keys of the documents to sort.
field (str): Field to sort.
reverse (bool, optional): Reverse search. Defaults to False.
Returns:
Sorted list with the documents keys.
findtext(field, text, exact=False, sens=False, inverse=False, asc=True) -> Simple text search on the provided field.
Args:
field (str): The field to search.
text (str): The value to be searched.
exact (bool, optional): Exact text match. Defaults to False.
sens (bool, optional): Case sensitive. Defaults to False.
inverse (bool, optional): Inverse search, return the documents that do not match the search. Defaults to False.
asc (bool, optional): Ascii conversion before matching, this matches text like 'cafe' and 'café'. Defaults to True.
Returns:
List with the keys of the documents that matched the search.
findnum(expression) -> Simple number comparison search on provided field.
Args:
expression (str): The comparison expression to use, e.g., "age >= 18". The pattern is 'field operator number'.
Returns:
List with the keys of the documents that matched the search.
find(query, sens=False, asc=True, sortby=None, reverse=False) -> Simple query like search.
Args:
query (str): The query to use.
sens (bool, optional): Case sensitive. Defaults to False.
asc (bool, optional): Ascii conversion before matching, this matches text like 'cafe' and 'café'. Defaults to True.
sortby (string, optional): Sort using the provided field.
reverse (bool, optional): Reverse sort. Defaults to False.
Returns:
List with the keys of the documents that matched the search.
You might also like...
A Painless Simple Way To Create Schema and Do Database Operations Quickly In Python
A Painless Simple Way To Create Schema and Do Database Operations Quickly In Python

PainlessDB - Taking Your Pain away to the moon 🚀 Contribute · Community · Documentation 🎫 Introduction : PainlessDB is a Python-based free and open-

A very simple document database

DockieDb A simple in-memory document database. Installation Build the Wheel Fork or clone this repository and run python setup.py bdist_wheel in the r

pickleDB is an open source key-value store using Python's json module.

pickleDB pickleDB is lightweight, fast, and simple database based on the json module. And it's BSD licensed! pickleDB is Fun import pickledb

securedb is a fast and lightweight Python framework to easily interact with JSON-based encrypted databases.

securedb securedb is a Python framework that lets you work with encrypted JSON databases. Features: newkey() to generate an encryption key write(key,

Oh-My-PickleDB is an open source key-value store using Python's json module.
Oh-My-PickleDB is an open source key-value store using Python's json module.

OH-MY-PICKLEDB oh-my-pickleDB is a lightweight, fast, and intuitive data manager written in python 📝 Table of Contents About Getting Started Deployme

TinyDB is a lightweight document oriented database optimized for your happiness :)
TinyDB is a lightweight document oriented database optimized for your happiness :)

Quick Links Example Code Supported Python Versions Documentation Changelog Extensions Contributing Introduction TinyDB is a lightweight document orien

Python object-oriented database

ZODB, a Python object-oriented database ZODB provides an object-oriented database for Python that provides a high-degree of transparency. ZODB runs on

Python function to extract all the rows from a SQLite database file while iterating over its bytes, such as while downloading it

Python function to extract all the rows from a SQLite database file while iterating over its bytes, such as while downloading it

Makes google's political ad database actually useful

Making Google's political ad transparency library suck less This is a series of scripts that takes Google's political ad transparency data and makes t

Comments
  • Save file format

    Save file format

    Hi! My main purpose for the project would be to store and share the database in human readable format in git. To solve conflicts if 2 users change the entries, it would be helpful to have the indent specified to store each doc on an extra line? Seems loading of the json files with newlines manually added seem to be no problem. Would this be an valid improvement?

    opened by kreuzberger 2
Owner
Pedro Gonring
Pedro Gonring
ClutterDB - Extremely simple JSON database made for infrequent changes which behaves like a dict

extremely simple JSON database made for infrequent changes which behaves like a dict this was made for ClutterBot

Clutter Development 1 Jan 12, 2022
Simpledb-py: Simple JSON database

Simpledb-py: Simple JSON database

тейлс 2 Feb 9, 2022
Simple json type database for python3

What it is? Simple json type database for python3! What about speed? The speed is great! All data is stored in RAM until saved. How to install? pip in

null 3 Feb 11, 2022
Elara DB is an easy to use, lightweight NoSQL database that can also be used as a fast in-memory cache.

Elara DB is an easy to use, lightweight NoSQL database written for python that can also be used as a fast in-memory cache for JSON-serializable data. Includes various methods and features to manipulate data structures in-memory, protect database files and export data.

Saurabh Pujari 101 Jan 4, 2023
LightDB is a lightweight JSON Database for Python

LightDB What is this? LightDB is a lightweight JSON Database for Python that allows you to quickly and easily write data to a file Installing pip3 ins

Stanislaw 14 Oct 1, 2022
Tiny local JSON database for Python.

Pylowdb Simple to use local JSON database ?? # This is pure python, not specific to pylowdb ;) db.data['posts'] = ({ 'id': 1, 'title': 'pylowdb is awe

Hussein Sarea 3 Jan 26, 2022
Shelf DB is a tiny document database for Python to stores documents or JSON-like data

Shelf DB Introduction Shelf DB is a tiny document database for Python to stores documents or JSON-like data. Get it $ pip install shelfdb shelfquery S

Um Nontasuwan 35 Nov 3, 2022
AWS Tags As A Database is a Python library using AWS Tags as a Key-Value database.

AWS Tags As A Database is a Python library using AWS Tags as a Key-Value database. This database is completely free* ??

Oren Leung 42 Nov 25, 2022
This is a simple graph database in SQLite, inspired by

This is a simple graph database in SQLite, inspired by "SQLite as a document database".

Denis Papathanasiou 1.2k Jan 3, 2023
A simple GUI that interacts with a database to keep track of a collection of US coins.

CoinCollectorGUI A simple gui designed to interact with a database. The goal of the database is to make keeping track of collected coins simple. The G

Builder212 1 Nov 9, 2021