This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

Overview

Street Density ai

Licence Issues last commit

This YoloV5 based model is fit to detect people and different types of land vehicles,
and displaying their density on a fitted map, according to their coordinates and detected labels.

Features:

  • Multiple Objects Detection
  • Trained on 3,000 street view Images
  • Exports Fitted and adjustable Maps
  • Calculates a density score according to image detected labels

Requierments:

Usage:

Object Detection:

identifies people and land vehicles in your images:

python src/yolov5/detect.py --source  <path to images folder> --project <output path>
--name <output folder name> --save-txt --conf 0.3

running this action will save your images with the anchor boxes around objects that the model found:

(if you don't want to save the labeled images, just add --nosave to the command above) in addition, it will save the detected object labels for each image.

Plotting a fitted map:

display the density on a fitted map (requires a .csv file)

python src/steetdensityai.py --labels <labels path that were created after the images detection>
--coordinates <path-to-csv/file.csv>  --images <path to images folder>
--img-per-cord 1 --output <output path>

notes

  • csv requires 2 columns to display the coordinates named: "longitude" and "latitude"
  • the code asumes that the coordinates are sorted by the image's name.
  • If you have multiple images per coordinate (for example if you have a 360 view, divided to 4 images), you can set the number of images per coordinate with : --img-per-cord <integer of images per coordinate >

Simple Example:

# detect objects: 
python src/yolov5/detect.py --source example/images --project example/images --name detected_images --save-txt --conf 0.4


# creates a label folder in example/images/detected_images named "labels"
# saves the images with the newly found objects anchor, and each image labels 


#plot desnity map
python src/steetdensityai.py --labels example/images/detected_images/labels --coordinates example/coordinates.csv  --images example/images --img-per-cord 4 --output example/images

 # will save the map.html file to example/images

You might also like...
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Rafael Project- Classifying rockets to different types using data science algorithms.
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste  in a pile of random trash through feeding it pictures or videos.
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Owner
Liron Bdolah
Liron Bdolah
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 5, 2023
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

null 150 Dec 30, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

null 41 Dec 14, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 4, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 9, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

null 22 Nov 3, 2022