edge-SR: Super Resolution For The Masses
Citation
BibTeX
@inproceedings{eSR,
title = {edge--{SR}: Super--Resolution For The Masses},
author = {Navarrete~Michelini, Pablo and Lu, Yunhua and Jiang, Xingqun},
booktitle = {Proceedings of the {IEEE/CVF} Winter Conference on Applications of Computer Vision ({WACV})},
month = {January},
year = {2022},
pages = {1078--1087},
url = {https://arxiv.org/abs/2108.10335}
}
Instructions:
-
Place input images in
input
directory (provided as empty directory). Color images will be converted to grayscale. -
To upscale images run:
python run.py
.Output images will come out in
output
directory. -
The GPU number and model file can be changed in run.py (in comment "CHANGE HERE").
Requirements:
- Python 3, PyTorch, NumPy, Pillow, OpenCV
Experiment results
- The
data
directory contains the filetests.pkl
that has the Python dictionary with all our test results on different devices. The following sample code shows how to read the file:
>>> import pickle
>>> test = pickle.load(open('tests.pkl', 'rb'))
>>> test['Bicubic_s2']
{'psnr_Set5': 33.72849620514912,
'ssim_Set5': 0.9283912810369976,
'lpips_Set5': 0.14221979230642318,
'psnr_Set14': 30.286027790636204,
'ssim_Set14': 0.8694934108301432,
'lpips_Set14': 0.19383049915943826,
'psnr_BSDS100': 29.571233006609656,
'ssim_BSDS100': 0.8418117904964167,
'lpips_BSDS100': 0.26246454380452633,
'psnr_Urban100': 26.89378248655882,
'ssim_Urban100': 0.8407461069831571,
'lpips_Urban100': 0.21186692919582129,
'psnr_Manga109': 30.850672809780587,
'ssim_Manga109': 0.9340133711400112,
'lpips_Manga109': 0.102985977955641,
'parameters': 104,
'speed_AGX': 18.72132628065749,
'power_AGX': 1550,
'speed_MaxQ': 632.5429857814075,
'power_MaxQ': 50,
'temperature_MaxQ': 76,
'memory_MaxQ': 2961,
'speed_RPI': 11.361346064182795,
'usage_RPI': 372.8714285714285}
The keys of the dictionary identify the name of each model and its hyper--parameters using the following format:
Bicubic_s#
,eSR-MAX_s#_K#_C#
,eSR-TM_s#_K#_C#
,eSR-TR_s#_K#_C#
,eSR-CNN_s#_C#_D#_S#
,ESPCN_s#_D#_S#
, orFSRCNN_s#_D#_S#_M#
,
where #
represents an integer number with the value of the correspondent hyper-parameter. For each model the data of the dictionary contains a second dictionary with the information displayed above. This includes: number of model parameters; image quality metrics PSNR, SSIM and LPIPS measured in 5 different datasets; as well as power, speed, CPU usage, temperature and memory usage for devices AGX
(Jetson AGX Xavier), MaxQ
(GTX 1080 MaxQ) and RPI
(Raspberry Pi 400).