Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Overview

arXiv lintex

Git repositoty of the manuscript entitled

Statistical quantification of confounding bias in predictive modelling

by Tamas Spisak

The manuscript describes and validates the package mlconfound.

Read the docs. Documentation Status.

Abstract

The lack of non-parametric statistical tests for confounding bias significantly hampers the development of robust, valid and generalizable predictive models in many fields of research. Here I propose the partial and full confounder tests, which, for a given confounder variable, probe the null hypotheses of unconfounded and fully confounded models, respectively.

The tests provide a strict control for Type I errors and high statistical power, even for non-normally and non-linearly dependent predictions, often seen in machine learning. Applying the proposed tests on models trained on functional brain connectivity data from the Human Connectome Project and the Autism Brain Imaging Data Exchange dataset reveals confounders that were previously unreported or found to be hard to correct for with state-of-the-art confound mitigation approaches.

The tests (implemented in the package mlconfound can aid the assessment and improvement of the generalizability and neurobiological validity of predictive models and, thereby, foster the development of clinically useful machine learning biomarkers.

This repository contains:

  • The latex source of the manuscript describing the 'mlconfound' approach: see manuscript.tex and related files.
  • Sll source code required to reproduce the results in the manuscript. See the directories: simulated and empirical.
  • All results. See the directories simulated/results and the analysis notebooks.
  • All figures. See the directory fig.

To reproduce the whole analysis:

./reproduce.sh

Citation

T. Spisak, Statistical quantification of confounding bias in predictive modelling, preprint on arXiv:2111.00814, 2021.

Licensing

  • Manuscript source and figures (contents of the root folder and the fig dir): CC BY
  • Source code (contents of the empirical and simulated folders): GPL3

Acknowledgements

The manuscript builds on an aesthetic and simple LaTeX style suitable for "preprint" publications such as arXiv and bio-arXiv, etc. It is based on the nips_2018.sty style.

You might also like...
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

Submission to Twitter's algorithmic bias bounty challenge
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

Implementation for
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

Fast, flexible and easy to use probabilistic modelling in Python.
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Releases(revision-1.1.0)
Owner
PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany
PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 6, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 8, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

?? Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how ?? Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 4, 2023
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 3, 2023
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 7, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

null 0 Jul 15, 2021
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

null 12 Jul 23, 2022