My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

Overview

kNN-vs-RFR

My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

In many areas, rental bikes have been launched to improve accessibility ease. It is important to have the rented bike ready and open to the public at the appropriate time, as this reduces the amount of time people have to wait. Eventually, ensuring a steady supply of rented bikes for the area becomes a big concern. The most important aspect is predicting the number of rental bikes required at each hour in order to maintain a steady supply. In this project, we discuss the ways in which we can predict the number of bikes needed for the particular day based on the provided data set. These type of prediction systems enable users to borrow a bike from a specific location and return it to a different location. Hence, we use machine learning to predict the number of rental bikes that are needed on a particular day

Background:

In Machine Intelligence, there are many ways in which we can predict the number of bikes that might be needed in a particular day. One of the methods used was to examine the models for predicting hourly rental bike demand and investigate a function filtering method to exclude non-predictive parameters and rate features based on their prediction efficiency. The project was accomplished by using repeated cross validation to train five statistical regression models with their best hyper-parameters, and then evaluating their results. The other method just estimates the cumulative number of rented bikes in the entire bike sharing system. The various data in the data collection were used to manipulate and forecast the final number of rental bikes. Methods such as Ridge Linear Regression, Support Vector Machine for Regression, Random Forest Method for Regression and Gradient Boosted Regression Tree are used for the prediction of rental bikes.

Additional Info:

Feel free to dowload my code which is in main.py. I have also provided a copy of the testing and training data sets used. Lastly, I have also uploaded a copy of the short research paper that I wrote based on this project.

You might also like...
It is a forest of random projection trees
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map, play blackjack game and robot in grid world and evaluate reward for it

A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Real-time domain adaptation for semantic segmentation

Advanced-Machine-Learning This repository contains the code for the project Real

A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Data science, Data manipulation and Machine learning package.
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

Data Version Control or DVC is an open-source tool for data science and machine learning projects
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Owner
null
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Nicholas Monath 31 Nov 3, 2022
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

null 2 Jan 22, 2022
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 2, 2023
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

BDFD 6 Nov 5, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

null 1.3k Jan 8, 2023