Flexible time series feature extraction & processing

Overview

tsflex

PyPI Latest Release Conda Latest Release support-version codecov Code quality Downloads PRs Welcome Documentation Testing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data.

Useful links

Installation

command
pip pip install tsflex
conda conda install -c conda-forge tsflex

Usage

tsflex is built to be intuitive, so we encourage you to copy-paste this code and toy with some parameters!

Feature extraction

import pandas as pd; import numpy as np; import scipy.stats as ss
from tsflex.features import MultipleFeatureDescriptors, FeatureCollection
from tsflex.utils.data import load_empatica_data

# 1. Load sequence-indexed data (in this case a time-index)
df_tmp, df_acc, df_ibi = load_empatica_data(['tmp', 'acc', 'ibi'])

# 2. Construct your feature extraction configuration
fc = FeatureCollection(
    MultipleFeatureDescriptors(
          functions=[np.min, np.mean, np.std, ss.skew, ss.kurtosis],
          series_names=["TMP", "ACC_x", "ACC_y", "IBI"],
          windows=["15min", "30min"],
          strides="15min",
    )
)

# 3. Extract features
fc.calculate(data=[df_tmp, df_acc, df_ibi], approve_sparsity=True)

Note that the feature extraction is performed on multivariate data with varying sample rates.

signal columns sample rate
df_tmp ["TMP"] 4Hz
df_acc ["ACC_x", "ACC_y", "ACC_z" ] 32Hz
df_ibi ["IBI"] irregularly sampled

Processing

Working example in our docs

Why tsflex?

  • Flexible:
  • Efficient:
  • Intuitive:
    • maintains the sequence-index of the data
    • feature extraction constructs interpretable output column names
    • intuitive API
  • Few assumptions about the sequence data:
    • no assumptions about sampling rate
    • able to deal with multivariate asynchronous data
      i.e. data with small time-offsets between the modalities
  • Advanced functionalities:

¹ These integrations are shown in integration-example notebooks.

Future work 🔨

  • scikit-learn integration for both processing and feature extraction
    note: is actively developed upon sklearn integration branch.
  • Support time series segmentation (exposing under the hood strided-rolling functionality) - see this issue
  • Support for multi-indexed dataframes

=> Also see the enhancement issues

Contributing 👪

We are thrilled to see your contributions to further enhance tsflex.
See this guide for more instructions on how to contribute.

Referencing our package

If you use tsflex in a scientific publication, we would highly appreciate citing us as:

@article{vanderdonckt2021tsflex,
    author = {Van Der Donckt, Jonas and Van Der Donckt, Jeroen and Deprost, Emiel and Van Hoecke, Sofie},
    title = {tsflex: flexible time series processing \& feature extraction},
    journal = {SoftwareX},
    year = {2021},
    url = {https://github.com/predict-idlab/tsflex},
    publisher={Elsevier}
}

Linkt to the preprint paper: https://arxiv.org/abs/2111.12429


👤 Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost

Comments
  • :sparkles: vectorized feature function support

    :sparkles: vectorized feature function support

    TODOs:

    • [x] Update docs with new arguments & explain vectorized feature function behavior
    • [x] Benchmark runtime of vectorized functions
    • [x] Benchmark memory peak of vectorized functions
    • [x] Add proper checks, with appropriate error msg, for equally sampled data assumption
    • [x] Add tests
    opened by jvdd 9
  • :recycle: refactor indexing + :scissors: decouple stride & window + :sparkles: support segment idxs

    :recycle: refactor indexing + :scissors: decouple stride & window + :sparkles: support segment idxs

    :recycle: Refactor indexing

    • :bug: fix bug with vectorized=True for strided rolling
      • [x] vectorized support for single feature windows
      • [x] vectorized support for empty feature windows
      • [x] test the above
    • :recycle: refactor the strided window segmentation (& indexing)
      • [x] add include_final_window argument to FeatureCollection .calculate (& StridedRolling)
      • [x] update docs
      • [x] test the above
      • [ ] remove support for TimeSequenceStridedRolling => Decided to not do this in this PR. We will leave this for another PR.
    • :see_no_evil: undo breaking change from #62 (to make code backwards compatible)
      • [x] revert the default window_idx argument in FeatureCollection.calculate to "end"
    • :robot: extend test matrix & update dependencies
      • [x] Add Python 3.10 to the test matrix
      • [x] Update dependencies (& remove locked statsmodels dependency - https://github.com/blue-yonder/tsfresh/issues/897)

    :scissors: Decouple stride

    We (@jonasvdd, @emield12, and @jvdd) believe that the stride should not be hardly coupled with a FeatureDescriptor. Therefore, to make tsflex more flexible (:wink:) we make the stride argument optional for FeatureDescriptor and MultipleFeatureDescriptor and add the functionality to pass your stride(s) to the FeatureCollection.calculate method.

    • :eyes: externally visible changes
      • [x] make stride optional in FeatureDescriptor
      • [x] add stride argument to FeatureCollection.calculate
      • [x] FeatureDescriptor / FeatureCollection.calculate should accept multiple strides
        • [x] StridedRolling should accept multiple strides
        • [x] test the above
      • [x] remove stride from output column name
        • [x] update reduce method
        • [x] update reduce method tests
      • [x] update the logging to handle multiple strides
        • [x] extend logging tests
    • :package: internal changes
      • [x] change stride -> strides: which is either a list of stride sizes (float or pd.Timedelta) or None (in StridedRolling and StridedRollingFactory)
      • [x] identify feature descriptors (FD) based on their window - output names
        • [x] set interection after StridedRolling search sorted TODO: moet geoptimaliseerd worden

    :sparkles: Support setpoints

    • [x] support setpoints
    • [x] test the above => Note: we allow setpoints of different timezones as the np.datetime64 conversion of these allow comparison..
    • [ ] trim range if not in data => Decided to not do this! (as this is somewhat an ambiguous operation) As using segment indexes is already an advanced operation, it is the user its responsability to either trim the segmented indexes or make their features robust.

    :see_no_evil: other stuff

    • :bug: fix bug with features.logger that does not handle numeric window & strides
      • [x] improve parsing for window and stride values in _parse_logging_execution_to_df
      • [x] test the above
    • :eyes: other minor stuff
      • [x] support offline data load
      • [x] warn the user with a RuntimeWarining when the data its index (passed to FeatureCollection.calculate) is not monotonically increasing
      • [x] test the above
    opened by jvdd 6
  • [MRG] Remove deprecated closed argument in pd.daterange

    [MRG] Remove deprecated closed argument in pd.daterange

    The closed argument was set to None which is the default, removing it should thus not have any impact. Since Pandas 1.4.0 this argument has been deprecated in favour of the inclusive argument so you get a lot of warnings when running the code. The default argument to inclusive is "both" which has the same behaviour as the current code. I thus see no need to add it. https://pandas.pydata.org/docs/reference/api/pandas.date_range.html

    opened by jeroenboeye 4
  • :bug: fix bug with bound_method + :sparkles: new integrations

    :bug: fix bug with bound_method + :sparkles: new integrations

    This PR handles

    (1) :bug: a bug in the bound_method + sequence based strided rolling

    • [x] check if .loc induces memory peak
    • [x] agree on what behavior is preferred for segmentation indexing
    • Agreed behavior:
      • make window_idx="begin" default instead of "end"
      • sequences should be segmented into n segments if there are exactly n segments possible (e.g., window=2, stride=2 => 5 segments on sequence of length 10)
      • we remain the current behavior of the end-index of the segments.
    • [x] extend tests

    (2) :sparkles: extends integration with other feature extraction packages

    • [x] add and test catch22 integration wrapper
    • [x] :x: add and test scikit-learn transformer wrapper
    • Decided to not do this (for now): have atm an ambiguas implementation -> more details in #56

    (3): :zap: faster irregular data check

    (4): :fire: add kaggle TPSAPR2022 notebook to ML examples

    opened by jvdd 3
  • Get features for each line

    Get features for each line

    Hello,

    I would like to generate features for each observation of my time serie and not only window by window.

    Does this possibility exist in tsfex and do you know how to do it ?

    Thanks in advance

    question 
    opened by IKetchup 3
  • :ambulance: Fix windows bug

    :ambulance: Fix windows bug

    This PR

    • Adds Windows & MacOS testing to the matrix
    • Fix a bug on Windows (PermissionError: [WinError 32]), which occurs when a logging file handler is not properly unregistered and closed
    • Disable multiprocessing on Windows, see #51
    opened by jvdd 1
  • :pushpin: Update dependencies

    :pushpin: Update dependencies

    Changes;

    • Overall dependencies are updated
    • Statsmodels dependencies are fixed @ 0.12.2 to avoid tsfresh errors. See https://github.com/blue-yonder/tsfresh/issues/897
    opened by jvdd 1
  • time-series batch / whole-series feature calculation

    time-series batch / whole-series feature calculation

    Objectives:

    Functionality

    • [ ] convenient way to extract features over the whole, unsegmented data (see also #67)
      • [ ] Discuss + decide together with @jvdd @mbignotti what option seems best to serve this functionality (regarding end user perspective)

    Available options:

    1. introduce a new method to the FeatureCollection (as done here):
      • advantages
        • Explicit method definition, less confusion for end-users
      • disadvanges :x:
        • A new method is introduced / less uniform interface to perform computation
    2. Perform unsegmented feature computation when all window and/or stride are NOT set.
      • advantages
        • more homogenous interface
      • disadvanges :x:
        • somewhat more implicitness code example:
     # NOTE: window and stride parameters are omitted. 
    fc = FeatureCollection(
        FeatureDescriptor(
            function = np.mean,
            series_name="Value",
        )
    )
    
    # Uses the whole (unsegmented) series of `data` to 
    # calculate the features. method remains the same.
    fc.calculate(data=df, return_df=True)
    
    1. Perform unsegmented feature computation when all windows are set to -1
    2. a combination of (2.) and (3.)

    As for now, this is performed by introducing the calculate_unsegmented method to the FeatureCollection:

    Bug fixes

    • [ ] fix the window_idx="end" and (window-size > data-range) bug
    opened by jonasvdd 0
  • Window and stride arguments are making it harder to use the package. feature_collection.reduce example

    Window and stride arguments are making it harder to use the package. feature_collection.reduce example

    First of all, this package is awesome. The community that deals with time series data needed to improve the game and tsflex have everything to be the main library.

    However, here are a few specific suggestions:

    Remove "windows" and "strides" arguments altogether for feature extraction: It does seem a bit excessive but hear me out. They are good arguments but not fundamental for feature extraction. They could be used in data preparation, Alteryx has a library called "compose" (https://github.com/alteryx/compose) just for the purpose of creating multiple time frame windows. Once the "window" is ready, just select the functions. I propose tsflex main function (feature_collection.calculate) just use time series data and a list of functions for feature extraction, no window or strides.

    Explaining further: The way I view the implementation of the essentials would be only this: feature_collection.calculate(time_series_df, functions). If any of the columns of the time series had any data type other than int, float, it could simply raise an error or ignore the column.

    Window and stride also make feature_collection.reduce function hard to use: After feature selection and having selected a few columns of the many created using tsflex I use the reduce that gives me the functions for transformation/extraction. The problem is that the naming convention includes window and strides (e.g: Open__mean__w=233500_s=233500) which means I have to have a time series with the same characteristics/size, which often doesn't happen. I use the arguments windows and strides like the following:

    simple_feats = MultipleFeatureDescriptors( functions=tsfresh_settings_wrapper(settings), series_names="Open", windows=len(stock_data) - 1, strides=len(stock_data) - 1, ) feature_collection = FeatureCollection(simple_feats) features_df = feature_collection.calculate( stock_full, return_df=True, show_progress=True, approve_sparsity=(True) )

    I use this because I need to process the whole dataset.

    Anyway, I hope this is helpful.

    enhancement question 
    opened by arturdaraujo 2
  • Question: Feature extraction on time series batch

    Question: Feature extraction on time series batch

    Hello, First of all, I would like to thank you for the really nice library. I think it is much more straight forward and at the same time flexible, compared to similar libraries. I have a use case where sometimes I need to compute features in a rolling fashion, for which the window parameter of the FeatureDescriptor object is really helpful, and some other times I need to compute features on time series batches. That is, the window parameter equals the length of the entire time series. However, I'm having a few issues with the latter case. Here is an example:

    import numpy as np
    import pandas as pd
    from tsflex.features import FeatureDescriptor, FeatureCollection
    
    series = np.random.rand(100)
    ts_index = pd.date_range(start="2022-06-09 00:00:00", periods=len(series), freq="min")
    df = pd.DataFrame({"Value": series}, index=ts_index)
    
    fc = FeatureCollection(
        FeatureDescriptor(
            function = np.mean,
            series_name="Value",
            window=len(df),
            stride=1
        )
    )
    
    fc.calculate(data=df, return_df=True)
    

    If I run the code above, I get the following error (personal info are hidden):

    Traceback (most recent call last):
      File "/****/*****/*****/***/***/***/python3.8/site-packages/tsflex/features/feature_collection.py", line 394, in calculate
        calculated_feature_list = [self._executor(idx) for idx in idxs]
      File "/****/*****/*****/***/***/***/python3.8/site-packages/tsflex/features/feature_collection.py", line 394, in <listcomp>
        calculated_feature_list = [self._executor(idx) for idx in idxs]
      File "/****/*****/*****/***/***/***/python3.8/site-packages/tsflex/features/feature_collection.py", line 208, in _executor
        stroll, function = get_stroll_func(idx)
      File "/****/*****/*****/***/***/***/python3.8/site-packages/tsflex/features/feature_collection.py", line 245, in get_stroll_function
        stroll = StridedRollingFactory.get_segmenter(**stroll_arg_dict)
      File "/****/*****/*****/***/***/***/python3.8/site-packages/tsflex/features/segmenter/strided_rolling_factory.py", line 75, in get_segmenter
        return TimeIndexSampleStridedRolling(data, window, stride, **kwargs)
      File "/****/*****/*****/***/***/***/python3.8/site-packages/tsflex/features/segmenter/strided_rolling.py", line 495, in __init__
        super().__init__(series_list, window, stride, *args, **kwargs)
      File "/****/*****/*****/***/***/***/python3.8/site-packages/tsflex/features/segmenter/strided_rolling.py", line 373, in __init__
        super().__init__(data, window, stride, *args, **kwargs)
      File "/****/*****/*****/***/***/***/python3.8/site-packages/tsflex/features/segmenter/strided_rolling.py", line 147, in __init__
        if np.ptp(container.end_indexes - container.start_indexes) != 0:
      File "<__array_function__ internals>", line 180, in ptp
      File "/****/*****/*****/***/***/***/python3.8/site-packages/numpy/core/fromnumeric.py", line 2667, in ptp
        return _methods._ptp(a, axis=axis, out=out, **kwargs)
      File "/****/*****/*****/***/***/***/python3.8/site-packages/numpy/core/_methods.py", line 278, in _ptp
        umr_maximum(a, axis, None, out, keepdims),
    ValueError: zero-size array to reduction operation maximum which has no identity
    ---------------------------------------------------------------------------
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/***/*****/****/****/***/***/python3.8/site-packages/tsflex/features/feature_collection.py", line 418, in calculate
        raise RuntimeError(
    RuntimeError: Feature Extraction halted due to error while extracting one (or multiple) feature(s)! See stack trace above.
    

    If I specify window=len(df) - 1,it works but then, of course, it is not using the last data point in the calculation.

    Am I doing something wrong? Is there a way to achieve the required behaviour?

    Thanks a lot!

    Environment: python==3.8.13 numpy==1.22.4 pandas==1.4.2 tsflex==0.2.3.7.7

    bug 
    opened by mbignotti 11
  • improve `get_processor_logs`

    improve `get_processor_logs`

    Current version:

    image

    new features:

    • add the columns: duration % -> can be directly calculated from the duration column, so does not need to be stored within the logs itself output_names -> the output names of the adjusted / newly created series. Can help to improve the function recall?
    enhancement 
    opened by jonasvdd 0
  • Improve jargon / logic of window position

    Improve jargon / logic of window position

    • https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.resample.html.
    • https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html?highlight=rolling#pandas.DataFrame.rolling Maybe we can use
      • the same naming convention
      • or even re-use their underlying logic (i.e., don't reimplement the wheel)
    opened by jonasvdd 0
Releases(v0.2.3)
  • v0.2.3(Nov 16, 2021)

    ❗ See also: tsflex v0.2.2 which is even more 🔥 than this one

    New features

    💚 Next to the tsfresh integrations, tsflex's feature extraction now fully integrates with seglearn and tsfel ⬇️

    from seglearn.feature_functions import base_features
    from tsfel.feature_extraction import get_features_by_domain
    
    from tsflex.features import FeatureCollection, MultipleFeatureDescriptors
    from tsflex.features.integrations import seglearn_feature_dict_wrapper, tsfel_feature_dict_wrapper
    from tsflex.utils.data import load_empatica_data
    
    # Load sequence-indexed data (in this case a time-index)
    df_tmp, df_acc = load_empatica_data(['tmp', 'acc'])
    
    # Construct your feature extraction configuration & extract features
    fc = FeatureCollection(
        MultipleFeatureDescriptors(
            functions=[
                *seglearn_feature_dict_wrapper(base_features()),
                *tsfel_feature_dict_wrapper(get_features_by_domain('statistical')),
            ],
            series_names=["TMP", "ACC_x", "ACC_y"],
            windows=["5min", "15min"],
            strides="5min"
        )
    )
    
    fc.calculate(data=[df_tmp, df_acc], return_df=True)
    

    Changes

    🎉 The FeatureCollection.calculcate it's feauture-DataFrame output now has a determenistic column order see - #40

    Source code(tar.gz)
    Source code(zip)
  • v0.2.2(Nov 12, 2021)

    New features

    • 🔥 Now also supports feature-extraction on numeric-index data (and thus not only time-based data)
    • 💚 Seamless integration with tsfresh, check out the example below:
    from tsfresh.feature_extraction import MinimalFCParameters; import scipy.stats as ss
    
    from tsflex.features import FeatureCollection, MultipleFeatureDescriptors
    from tsflex.features.integrations import tsfresh_settings_wrapper
    from tsflex.utils.data import load_empatica_data
    
    # Load sequence-indexed data (in this case a time-index)
    df_tmp, df_acc = load_empatica_data(['tmp', 'acc'])
    
    # Construct your feature extraction configuration & extract features
    fc = FeatureCollection(
        MultipleFeatureDescriptors(
            functions=tsfresh_settings_wrapper(MinimalFCParameters()) + [ss.skew],
            series_names=["TMP", "ACC_x", "ACC_y"],
            windows=["5min", "15min"],
            strides="5min"
        )
    )
    
    fc.calculate(data=[df_tmp, df_acc], return_df=True)
    
    • ⚡ Optimized strided-rolling feature-extraction, see the newly generated benchmark ⬇️

    image

    • Added FeatureCollection.reduce() which comes in really handy when feature selection is performed in your machine-learning pipeline
    • 🐻 chunk_data() now also supports DataFrame-dicts as input, which can be more convenient when having DataFrames with a lot of columns for which you want to specify the sample-frequencies.
    • 🌻 SeriesPipeline is now more compose-like as it now accepts SeriesPipeline instances

    Changes

    • 🧵 Changed pathos ➡️ multiprocess as multiprocessing back-end
    • 🔧 Moved the bound_method argument to FeatureCollection.calculate()
    • 📝 Rewrote strided-rolling back-end in a more OO manner (introduced the segmenter module), which complies with our roadmap of providing more segmenting functionality
    Source code(tar.gz)
    Source code(zip)
Owner
PreDiCT.IDLab
Repositories of the IDLab PreDiCT group
PreDiCT.IDLab
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 5, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

null 7 May 26, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

null 5 Nov 3, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 8, 2023
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

null 61 Jan 1, 2023
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 8, 2023
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

null 187 Dec 26, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 8, 2023
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 7, 2022
Ian Covert 130 Jan 1, 2023
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022