Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

Overview

PPML: Machine Learning on Data you cannot see

Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022

Abstract

Privacy guarantees are one of the most crucial requirements when it comes to analyse sensitive information. However, data anonymisation techniques alone do not always provide complete privacy protection; moreover Machine Learning (ML) models could also be exploited to leak sensitive data when attacked and no counter-measure is put in place.

Privacy-preserving machine learning (PPML) methods hold the promise to overcome all those issues, allowing to train machine learning models with full privacy guarantees.

This workshop will be mainly organised in two parts. In the first part, we will explore one example of ML model exploitation (i.e. inference attack ) to reconstruct original data from a trained model, and we will then see how differential privacy can help us protecting the privacy of our model, with minimum disruption to the original pipeline. In the second part of the workshop, we will examine a more complicated ML scenario to train Deep learning networks on encrypted data, with specialised distributed federated learning strategies.

Outline

  • Introduction: Brief Intro to PPML and to the workshop (slides)

  • Part 1: Strengthening Deep Neural Networks

    • Model vulnerabilities:
    • Deep Learning with Differential Privacy
  • Part 2: Primer on Privacy-Preserving Machine Learning

Note: the material has been updated after the conference, to match the flow of the presentation as delivered during the conference, as well as to incorporate feedbacks received afterwards.

"PyConDE Logo" Video recording of the session presented at PyCon DE

Get the material

Clone the current repository, in order to get the course materials. To do so, once connected to your remote machine (via SSH), execute the following instructions:

cd $HOME  # This will make sure you'll be in your HOME folder
git clone https://github.com/leriomaggio/ppml-pyconde.git

Note: This will create a new folder named ppml-pyconde. Move into this folder by typing:

cd ppml-pyconde

Well done! Now you should do be in the right location. Bear with me another few seconds, following instructions reported below šŸ™

Set up your Environment

To execute the notebooks in this repository, it is necessary to set up the environment.

Please refer to the Get-Ready.ipynb notebook for a step-by-step guide on how to setup the environment, and check that all is working, and ready to go.

Note: You could run this notebook directly in VSCode, or in your existing Jupyter notebook/lab environment:

jupyter notebook Get-Ready.ipynb

Colophon

Author: Valerio Maggio (@leriomaggio), Senior Research Associate, University of Bristol.

All the Code material is distributed under the terms of the Apache License. See LICENSE file for additional details.

All the instructional materials in this repository are free to use, and made available under the [Creative Commons Attribution license][https://creativecommons.org/licenses/by/4.0/]. The following is a human-readable summary of (and not a substitute for) the full legal text of the CC BY 4.0 license.

You are free:

  • to Share---copy and redistribute the material in any medium or format
  • to Adapt---remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

  • Attribution---You must give appropriate credit (mentioning that your work is derived from work that is Copyright Ā© Software Carpentry and, where practical, linking to http://software-carpentry.org/), provide a [link to the license][cc-by-human], and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions---You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Acknowledgment and funding

The material developed in this tutorial has been supported by the University of Bristol, and by the Software Sustainability Institute (SSI), as part of my SSI fellowship on PETs (Privacy Enchancing Technologies).

Please see this deck to know more about my fellowship plans.

I would also like to thank all the people at OpenMined for all the encouragement and support with the preparation of this tutorial. I hope the material in this repository could contribute to raise awareness about all the amazing work on PETs it's being provided to the Open Source and the Python communities.

SSI Logo UoB Logo OpenMined

Contacts

For any questions or doubts, feel free to open an issue in the repository, or drop me an email @ valerio.maggio_at_gmail_dot_com

You might also like...
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Official implementation of the network presented in the paper
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

Releases(pyconde)
  • pyconde(Jun 14, 2022)

    Tutorial on Privacy-Preserving Machine Learning as presented at PyCon DE 2022 (https://2022.pycon.de/program/QHJ7SX/)

    Full Changelog: https://github.com/leriomaggio/ppml-tutorial/commits/pyconde

    Source code(tar.gz)
    Source code(zip)
Owner
Valerio Maggio
Data Scientist and Researcher @DynamicGenetics
Valerio Maggio
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

null 184 Jan 3, 2023
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. āš” Overview Fidesops (fee-dez-Ƥps, combination of the Lati

Ethyca 44 Dec 6, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 2, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

null 31 Sep 27, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

null 73 Nov 6, 2022
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

null 88 Nov 22, 2022