

	
Environment Management

	
Data Containers

	
Debugging Tools

	
ORM

	
RESTful API

	
Data Analysis

	

More

Template Engine
Package Management
Logging
Organization
Boilerplate
Science
Concurrency and Parallelism
Authentication
Data Structures
Caching
URL Manipulation
Recommender Systems
Network Virtualization
Video
Computer Vision
Editor Plugins
Third-party APIs Wrappers
Deep Learning
Image Processing
Serialization
Database Drivers
Game Development
Cryptography
Data Visualization
SCM
Microsoft Windows
Text Data & NLP
Task Queues
Productivity
Job Scheduler
Web Asset Management
WSGI Servers
CLI Interface Development
Forms
Storage
Networking
CMS
Data Serialization
Security related resources
Process Utilities
DevOps Tools
Configuration
GUI Development
Office Files Processing
Performance optimization
GraphQL
GPU Utilities
Implementations of Python
CLI Tools
HTTP Clients
General Utilities
Monitoring
Reinforcement Learning
Interpreter
PDF Files Processing
Functional Programming
IDE
Distribution
Linters & Style Checkers
Geolocation
Machine Learning
Text Processing
E-commerce
HTML Manipulation
Pytorch Utilities
RPC Servers
Build Tools
Hardware
Code Analysis
Markdown/YAML
FastAPI Utilities
Communication
Miscellaneous
Date & Time Utilities
Feature Engineering
Code review tool
WebSocket
Internationalization
Serverless Frameworks
Pipelines
Database
Data Validation
Web Crawling
Downloader
Deep Learning Model Explanation
Testing
Static Site Generator
FastAPI Projects
JSON
Email
Algorithms
Search
Documentation
Payment Processing
Flask
Specific Formats Processing
File & Path Utilities
Django
Distributed Computing
Sklearn Utilities
Finance
Web Frameworks
Code Refactoring
Web Content Extracting
Asset Management
PyTorch Learning Resources
Audio
Admin Panels

	Overview
	Comments
5

	Releases

	

Star 1.9k

	

Watch 44

	

Fork 288

PyMuPDF is a Python binding with support for MuPDF

PyMuPDF

 Last update: Jan 3, 2023

Related tags

PDF Files Processing

epub
mupdf
pdf-documents
xps

Overview

PyMuPDF 1.18.14

Release date: June 1, 2021

Travis-CI:

On PyPI since August 2016:

Authors

	Jorj X. McKie
	Ruikai Liu

Introduction

PyMuPDF (current version 1.18.14) is a Python binding with support for MuPDF (current version 1.18.*), a lightweight PDF, XPS, and E-book viewer, renderer, and toolkit, which is maintained and developed by Artifex Software, Inc.

MuPDF can access files in PDF, XPS, OpenXPS, CBZ, EPUB and FB2 (e-books) formats, and it is known for its top performance and high rendering quality.

With PyMuPDF you can access files with extensions like ".pdf", ".xps", ".oxps", ".cbz", ".fb2" or ".epub". In addition, about 10 popular image formats can also be handled like documents: ".png", ".jpg", ".bmp", ".tiff", etc..

In partnership with Artifex, PyMuPDF is now also available for commercial licensing. This agreement has no impact on use cases, that are compliant with the open-source license AGPL. Please see the "License and Copyright" section below for additional information.

Usage and Documentation

For all supported document types (i.e. including images) you can

	decrypt the document
	access meta information, links and bookmarks
	render pages in raster formats (PNG and some others), or the vector format SVG
	search for text
	extract text and images
	convert to other formats: PDF, (X)HTML, XML, JSON, text

To some degree, PyMuPDF can therefore be used as an image converter: it can read a range of input formats and can produce Portable Network Graphics (PNG), Portable Anymaps (PNM, etc.), Portable Arbitrary Maps (PAM), Adobe Postscript and Adobe Photoshop documents, making the use of other graphics packages obselete in these cases. But interfacing with e.g. PIL/Pillow for image input and output is easy as well.

For PDF documents, there exists a plethorea of additional features: they can be created, joined or split up. Pages can be inserted, deleted, re-arranged or modified in many ways (including annotations and form fields).

	 Images and fonts can be extracted or inserted.

You may want to have a look at this cool GUI example script, which lets you insert, delete, replace or re-position images under your visual control.

Since v1.18.8 there is a new experimental Document method subset_fonts(), which automatically builds subsets based on the usage of all eligible fonts in the document. Especially for new documents, this can lead to significant file size reductions. The method was developed in cooperation with our user @cuteufo - again thanks a lot for the contribution.

	 Embedded files are fully supported.

	 PDFs can be reformatted to support double-sided printing, posterizing, applying logos or watermarks

	 Password protection is fully supported: decryption, encryption, encryption method selection, permmission level and user / owner password setting.

	 Support of the PDF Optional Content concept for images, text and drawings.

	 Low-level PDF structures can be accessed and modified.

	 PyMuPDF can also be used as a module in the command line using "python -m fitz ...". This is a versatile utility, which we will further develop going forward. It currently supports PDF document

	encryption / decryption / optimization
	creating sub-documents
	document joining
	image / font extraction
	full support of embedded files.

Have a look at the basic demos, the examples (which contain complete, working programs), and the recipes section of our Wiki sidebar, which contains more than a dozen of guides in How-To-style.

Our documentation, written using Sphinx, is available in various formats from the following sources. It currently is a combination of a reference guide and a user manual. For a quick start look at the tutorial and the recipes chapters.

	You can view it online at Read the Docs. This site also provides download options for PDF.
	The search function on Read the Docs does not work for me currently. If you want a working searchable local version, please download a zipped HTML for here.
	Find a Windows help file here.

Installation

For Windows, Linux and Mac OSX platforms, there are wheels in the download section of PyPI. This includes Python 64bit versions 3.6 through 3.9. For Windows only, 32bit versions are available too. Since version 1.18.14 there also exist wheels for the Linux ARM architecture - look for platform tag manylinux2014_aarch64.

If your platform is not supported with one of our wheels, you need to generate PyMuPDF yourself as follows. This requires the development version of Python.

Before you can do that, you must first build MuPDF. For most platforms, the MuPDF sources contain prepared procedures for achieving this. Please observe the following general steps:

	 Be sure to download the official MuPDF source release from here. Do not use MuPDF's GitHub repo. It contains their development source for future versions.

	 This repo's fitz folder contains one or more files whose names start with a single underscore "_". These files contain configuration data and potentially other fixes. Copy-rename each of them to their correct target location within the downloaded MuPDF source. Currently, these files are:

	 Optional: fitz configuration file _config.h copy-replace to: mupdf/include/mupdf/fitz/config.h. It contains configuration data like e.g. which fonts to support. If omitting this change, the binary extension module will be over 30 MB (compared to around 11 MB). Does not impact functionality.

	 Now MuPDF can be generated.

	 Please note that you will need the interface generator SWIG when building PyMuPDF from the sources of this repository (please refer to issue #312 for some background on this).

	PyMuPDF wheels are being generated using SWIG v4.0.2.

	 If you do not use SWIG, please download the sources from PyPI - they contain sources pre-processed by SWIG, so installation should work like any other Python extension generation on your system.

Once this is done, adjust directories in setup.py and run python setup.py install.

The following sections contain further comments for some platforms.

Ubuntu

Our users (thanks to @gileadslostson and @jbarlow83!) have documented their MuPDF installation experiences from sources in this Wiki page.

OSX

First, install the MuPDF headers and libraries, which are provided by mupdf-tools: brew install mupdf-tools.

Then you might need to export ARCHFLAGS='-arch x86_64', since libmupdf.a is for x86_64 only.

Finally, please double check setup.py before building. Update include_dirs and library_dirs if necessary.

MS Windows

If you are looking to make your own binary, consult this Wiki page. It explains how to use Visual Studio for generating MuPDF in quite some detail.

Earlier Versions

Earlier versions are available in the releases directory.

License and Copyright

In order to comply with MuPDF’s dual licensing model, PyMuPDF has entered into an agreement with Artifex who has the right to sublicense PyMuPDF to third parties.

PyMuPDF and MuPDF are now available under both, open-source AGPL and commercial license agreements.

Please read the full text of the AGPL license agreement (which is also included here in file COPYING) to ensure that your use case complies with the guidelines of this license. If you determine you cannot meet the requirements of the AGPL, please contact Artifex for more information regarding a commercial license.

Artifex is the exclusive commercial licensing agent for MuPDF.

Artifex, the Artifex logo, MuPDF, and the MuPDF logo are registered trademarks of Artifex Software Inc. © 2021 Artifex Software, Inc. All rights reserved.

Contact

Please use the Discussions menu for questions, comments, or asking others for help, and submit issues here. If you wish, you can also contact me directly via .

Comments

	

Wrong Handling of Reference Count of "None" Object

I'm iterating all xrefs found in the pdf to determine their "content":

document = fitz.Document(fileName)
nonImageXrefs = []
imageXrefs = []

allXrefsLength = document.xref_length()
for xref in range(1, allXrefsLength):
 if document.xref_get_key(xref, "Subtype")[1] == "/Image":
 if document.extract_image(xref):
 imageXrefs.append(xref)
 else:
 rawData = document.xref_stream_raw(xref)
 if rawData is None or len(rawData) == 0:
 print("xref {0} is neither image nor deflatable stream".format(xref))
 else:
 nonImageXrefs.append(xref)

And when there are lot's of such actions I'm getting following error:

Fatal Python error: none_dealloc: deallocating None
Python runtime state: initialized

Current thread 0x00002b44 (most recent call first):
 File "C:\Program Files\Python\lib\pdfUtils.py", line 592 in optimizeWithPyMuPdf
 File "C:\Users\Alex\PycharmProjects\pdfOptimizer\pdf_opt.py", line 8 in <module>

Extension modules: fitz._fitz, zopfli.zopfli, PIL._imaging (total: 3)

Process finished with exit code -1073740791 (0xC0000409)

Line 592 is rawData = document.xref_stream_raw(xref)

This happens in random place of xrefs list, but usual counter is between 11000-13000

I'm using Windows 10, python 3.10 x64, pyMuPDF 1.21.1 installed by pip.

Attached sample file, but as far as I can see it is not caused by some specific file.
eos6d-mk2-im2-en1.pdf

bug Fixed in next release

opened by AlexMatiash 2

	

Replace image throws an error

Please provide all mandatory information!

Describe the bug (mandatory)

Using the replace_image method on the Page object fails with an error for a missing method on the Document object.

To Reproduce (mandatory)

>>> fitz_doc = fitz.open("/Users/ashah/GoogleDrive/YearbookCreatorInput/Test_School.pdf")
>>> page6 = fitz_doc.load_page(7)
>>> page6.get_images()
[(112, 0, 1985, 1600, 8, 'ICCBased', '', 'Im55', 'DCTDecode'), (113, 0, 1800, 1200, 8, 'ICCBased', '', 'Im56', 'DCTDecode'), (114, 0, 2100, 1402, 8, 'ICCBased', '', 'Im57', 'DCTDecode'), (115, 0, 808, 1436, 8, 'ICCBased', '', 'Im58', 'DCTDecode'), (90, 0, 1800, 1200, 8, 'ICCBased', '', 'Im48', 'DCTDecode'), (95, 0, 1200, 1800, 8, 'ICCBased', '', 'Im53', 'DCTDecode'), (117, 121, 1767, 1144, 8, 'ICCBased', '', 'Im59', 'FlateDecode'), (92, 0, 1200, 1800, 8, 'ICCBased', '', 'Im50', 'DCTDecode'), (118, 122, 1365, 1365, 8, 'ICCBased', '', 'Im60', 'FlateDecode'), (119, 123, 924, 1159, 8, 'ICCBased', '', 'Im61', 'FlateDecode')]
>>> page6.replace_image(95, filename='/Users/ashah/GoogleDrive/Test_School/blank.png')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.10/site-packages/fitz/utils.py", line 255, in replace_image
 if not doc.is_image(xref):
AttributeError: 'Document' object has no attribute 'is_image'

For problems when building or installing PyMuPDF, give the full output of the build/install command so that, for example, all pip/compiler/linker errors/warnings can be seen.

Expected behavior (optional)

Describe what you expected to happen (if not obvious).

Screenshots (optional)

If applicable, add screenshots to help explain your problem.

Your configuration (mandatory)

	Operating system, potentially version and bitness
	Python version, bitness
	PyMuPDF version, installation method (wheel or generated from source).

print(sys.version, "\n", sys.platform, "\n", fitz.doc)
3.10.6 (main, Aug 11 2022, 13:49:25) [Clang 13.1.6 (clang-1316.0.21.2.5)]
darwin

PyMuPDF 1.21.1: Python bindings for the MuPDF 1.21.1 library.
Version date: 2022-12-13 00:00:01.
Built for Python 3.10 on darwin (64-bit).

For example, the output of print(sys.version, "\n", sys.platform, "\n", fitz.__doc__) would be sufficient (for the first two bullets).

Additional context (optional)

Add any other context about the problem here.

bug Fixed in next release

opened by foranuj 1

	

Failed to read JPX header when trying to get blocks

Describe the bug (mandatory)

When I'm trying to get blocks from some pdfs, the following error occurs: RuntimeError: Failed to read JPX header. The same error occurs when I'm trying to get the pixmap with the function get_pixmap.

It works if I use page.gettext() without block or dict parameter.

PDFs with this error have the following attributes:

	Producer: GPL Ghostscript 9.23
	PDF Version: 1.5

If I edit the PDF file with any online tool, for example https://www.sejda.com/pdf-editor, the attributes change and the error disappears.

To Reproduce (mandatory)

PDF file - test_get_blocks.pdf

import fitz

with fitz.open("test_get_blocks.pdf") as doc:
 for page in doc:
 print(page.get_text("blocks"))

Traceback

Traceback (most recent call last):
 File "/home/johni/Projects/pdf-to-txt/main.py", line 5, in <module>
 print(page.get_text("dict"))
 File "/home/johni/.pyenv/versions/3.9.15/lib/python3.9/site-packages/fitz/utils.py", line 808, in get_text
 tp = page.get_textpage(clip=clip, flags=flags)
 File "/home/johni/.pyenv/versions/3.9.15/lib/python3.9/site-packages/fitz/fitz.py", line 5675, in get_textpage
 textpage = self._get_textpage(clip, flags=flags, matrix=matrix)
 File "/home/johni/.pyenv/versions/3.9.15/lib/python3.9/site-packages/fitz/fitz.py", line 5661, in _get_textpage
 val = _fitz.Page__get_textpage(self, clip, flags, matrix)
RuntimeError: Failed to read JPX header

Notebook to reproduce the error

Your configuration (mandatory)

	Operating system Ubuntu 22.04.1 LTS
	Python version 3.9.15
	PyMuPDF version 1.21.1

upstream bug

opened by johnidm 4

	

1.21.1: test_color_count fails

Please provide all mandatory information!

Describe the bug (mandatory)

test_color_count fails

To Reproduce (mandatory)

 export PYMUPDF_SETUP_MUPDF_BUILD=""
 python -m build --wheel --no-isolation

 local _site_packages=$(python -c "import site; print(site.getsitepackages()[0])")
 local _test_dir="test_dir"

 cd $_name-$pkgver
 mkdir -vp $_test_dir
 # install to test dir for testing
 python -m installer --destdir="$_test_dir" dist/*.whl

 export PYTHONPATH="$_test_dir/$_site_packages:$PYTHONPATH"
 # disable broken test: https://github.com/pymupdf/PyMuPDF/issues/2040
 pytest -vv -c /dev/null tests/ -k 'not test_textbox3'

=================================== FAILURES ===================================
_______________________________ test_color_count _______________________________

 def test_color_count():
 pm = fitz.Pixmap(imgfile)
> assert pm.color_count() == 40624
E assert 39912 == 40624
E + where 39912 = <bound method Pixmap.color_count of Pixmap(DeviceRGB, IRect(0, 0, 439, 501), 0)>()
E + where <bound method Pixmap.color_count of Pixmap(DeviceRGB, IRect(0, 0, 439, 501), 0)> = Pixmap(DeviceRGB, IRect(0, 0, 439, 501), 0).color_count

tests/test_pixmap.py:94: AssertionError
=============================== warnings summary ===============================
../../../../usr/lib/python3.10/site-packages/_pytest/cacheprovider.py:433
 /usr/lib/python3.10/site-packages/_pytest/cacheprovider.py:433: PytestCacheWarning: could not create cache path /dev/.pytest_cache/v/cache/nodeids
 config.cache.set("cache/nodeids", sorted(self.cached_nodeids))

../../../../usr/lib/python3.10/site-packages/_pytest/cacheprovider.py:387
 /usr/lib/python3.10/site-packages/_pytest/cacheprovider.py:387: PytestCacheWarning: could not create cache path /dev/.pytest_cache/v/cache/lastfailed
 config.cache.set("cache/lastfailed", self.lastfailed)

../../../../usr/lib/python3.10/site-packages/_pytest/stepwise.py:52
 /usr/lib/python3.10/site-packages/_pytest/stepwise.py:52: PytestCacheWarning: could not create cache path /dev/.pytest_cache/v/cache/stepwise
 session.config.cache.set(STEPWISE_CACHE_DIR, [])

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=========================== short test summary info ============================
FAILED ../../../../dev/test_pixmap.py::test_color_count - assert 39912 == 40624
====== 1 failed, 95 passed, 1 skipped, 1 deselected, 3 warnings in 1.65s =======

python-pymupdf-1.21.1-1-x86_64-build.log
python-pymupdf-1.21.1-1-x86_64-check.log

Expected behavior (optional)

All tests pass.

Screenshots (optional)

n/a

Your configuration (mandatory)

	Arch Linux
	Python 3.10.8
	PyMuPDF 1.21.1 from tarball

Additional context (optional)

n/a

opened by dvzrv 2

	

Redaction removing more text than expected

Describe the bug (mandatory)

When applying a redaction on a document, the following word is removed as well.

To Reproduce (mandatory)

Example PDF file: test_doc.pdf

Run this script:

import fitz
doc = fitz.open("test_doc.pdf")
page = doc[0]
areas = page.search_for("{sig}")
rect = areas[0]
page.add_redact_annot(rect)
page.apply_redactions()
doc.saveIncr()
doc.close()

The searched word "{sig}" is removed (as expected).
The word "Vertrag" on the top right is removed as well (unexpected).

Expected behavior (optional)

Searched string should be removed. No other change should be made.

Screenshots (optional)

Before script:

After script:

Your configuration (mandatory)

	OS independant, happening on Windows 11 as well as Debian 11
	Python Python 3.10.8
	PyMuPDF 1.21.0, installed via pip

Thank you!

upstream bug

opened by seb-bau 3

	

Image in pdf changes color after applying redactions

Description

Image in a PDF file changes color after applying redactions.

To Reproduce

Execute the following python script to reproduce the issue. The script uses this pdf file image_issue.pdf .

import os
import fitz

script_path = os.path.abspath(__file__)
script_folder = os.path.dirname(script_path)
doc = fitz.open(os.path.join(script_folder, 'image_issue.pdf'))

page = doc.load_page(0)

rx=135.123
ry=123.56878
rw=69.8409
rh=9.46397

x0 = rx
y0 = ry
x1 = rx + rw
y1 = ry + rh

rect = fitz.Rect(x0, y0, x1, y1)

font = fitz.Font("Helvetica")
fill_color=(0,0,0)
page.add_redact_annot(
 quad=rect,
 #text="null",
 fontname=font.name,
 fontsize=12,
 align=fitz.TEXT_ALIGN_CENTER,
 fill=fill_color,
 text_color=(1,1,1),
)

page.apply_redactions()

doc.save(os.path.join(script_folder, 'image_issue_redacted.pdf'))

Note that I am using the default images=2 (blank out overlapping image parts) when calling apply_redactions(). Using images= 0 (ignore) or images=1(remove complete overlapping image) are not desirable for my use case.

Expected behavior

The color of the image in the pdf file should not change after applying redactions.

Screenshots

Here's a screenshot of the problem.

Your configuration

	Operating system Ubuntu 22.04.1 LTS
	Python version 3.8.14
	PyMuPDF version 1.20.2

upstream bug

opened by ot-ksrinivasan 7

Releases(1.21.1)

	

1.21.1(Dec 13, 2022)

PyMuPDF-1.21.1 has been released.

Wheels for Windows, Linux and MacOS, and the sdist, are available on pypi.org and can be installed in the usual way, for example:

python -m pip install --upgrade pymupdf

Changes in Version 1.21.1 (2022-12-13)

	
This release uses MuPDF-1.21.1.

	
Bug fixes:

	Fixed #2110: Fully embedded font is extracted only partially if it occupies more than one object
	Fixed #2094: Rectangle Detection Logic
	Fixed #2088: Destination point not set for named links in toc
	Fixed #2087: Image with Filter "[/FlateDecode/JPXDecode]" not extracted
	Fixed #2086: Document.save() owner_pw & user_pw has buffer overflow bug
	Fixed #2076: Segfault in fitz.py
	Fixed #2051: Missing DPI Parameter
	Fixed #2048: Invalid size of TextPage and bbox with newest version 1.21.0
	Fixed #2045: SystemError: returned a result with an error set
	Fixed #2039: 1.21.0 fails to build against system libmupdf
	Fixed #2036: Archive::Archive defined twice

	
Other

	Swallow "&zoom=nan" in link uri strings.
	Add new Page utility methods Page.replace_image() and Page.delete_image().

	
Documentation:

	#2040: Added note about test failure with non-default build of MuPDF, to tests/README.md.
	#2037: In docs/installation.rst, mention incompatibility with chocolatey.org on Windows.
	#2061: Fixed description of Annot.file_info.
	#2065: Show how to insert internal PDF link.
	Improved description of building from source without an sdist.
	Added information about running tests.
	#2084: Fixed broken link to PyMuPDF-Utilities.

Source code(tar.gz)
Source code(zip)

	

1.21.0rc2(Nov 7, 2022)

This is largely unchanged from 1.21.0rc1, except that it builds with the official MuPDF-1.21.0 release.

Install with: python -m pip install pymupdf==1.21.0rc2

	Uses mupdf-1.21.0.
	New Story support.
	Added wheels for Python-3.11.
	Docs: https://pymupdf.readthedocs.io/en/1.21.0rc2/
	Changelog: https://pymupdf.readthedocs.io/en/1.21.0rc2/changes.html

Source code(tar.gz)
Source code(zip)

	

1.21.0rc1(Nov 1, 2022)

Install with: python -m pip install pymupdf==1.21.0rc1

	Uses mupdf-1.21.0-rc1.
	New Story support.
	Added wheels for Python-3.11.
	Docs: https://pymupdf.readthedocs.io/en/1.21.0rc1/
	Changelog: https://pymupdf.readthedocs.io/en/1.21.0rc1/changes.html

Source code(tar.gz)
Source code(zip)

	

1.20.2(Aug 13, 2022)

	Built with MuPDF-1.20.3.
	Fix #1787.
	Fix #1824.
	Improvements to documentation:
	Moved old docs/faq.rst into separate docs/recipes-* files.
	Improved information about building from source in docs/installation.rst.
	Clarified memory allocation setting JM_MEMORY in docs/tools.rst.
	Fixed link to PDF Reference manual in docs/app3.rst.
	Fixed building of html documentation on OpenBSD.

Wheels for Windows, Linux and MacOS, and the sdist, are available on pypi.org and can be installed in the usual way, for example:

pip install --upgrade pymupdf

Source code(tar.gz)
Source code(zip)

	

1.20.1(Jun 27, 2022)

	Fix https://github.com/pymupdf/PyMuPDF/pull/1724.
	Fix https://github.com/pymupdf/PyMuPDF/issues/1771.
	Fix https://github.com/pymupdf/PyMuPDF/issues/1751.
	Fix https://github.com/pymupdf/PyMuPDF/issues/1645.
	Improvements to sphinx-generated documentation.

Source code(tar.gz)
Source code(zip)

	

1.20.0(Jun 27, 2022)

This release integrates the recently-released MuPDF-1.20.0, and has fixes for #1733 and #1738. The latter also contains an additional fix for occasional SEGVs when freeing documents.

Building from source works slightly differently from before:

	We now automatically download the required MuPDF source and build it into PyMuPDF.
	Python sdists (source distributions) already contain the required MuPDF source and build without downloading.
	One can override the default build behaviour by setting environmental variables, for example to build with a system-installed mupdf. See the doc-comment at the start of setup.py for details.

Source code(tar.gz)
Source code(zip)

	

1.19.6(Mar 5, 2022)

Fixes:
#1620, #1601

Enhancements:

	new method Page.load_widget() to load a widget from its xref
	new dictionary pdfcolor which contains 500 predefined PDF colors
	Quad class supports operator algebra
	text search and extraction default flags now accessible as predefined constants
	iterators Page.annots() and Page.widgets() now prohibit reloading the page within their scope
	removed multiple utility functions from the Tools class and redefined them as standalone
	Parameter new in Document.update_stream() is now obsolete.

Source code(tar.gz)
Source code(zip)

	

1.19.5(Feb 3, 2022)

Fixes: #1583, #1552, #1550, #1521, #1518, #1513, #1510, #1417, #1550.
Also fixed some undocumented errors that caused the span["origin"] to be incorrectly set in corner cases.

Added new items "orientation" and associated transformtion matrix to the output of fitz.image_properties(), which contains EXIF data of supporting image files.

A new method Document.xref_copy() allows making xref objects duplicates of each other.

Source code(tar.gz)
Source code(zip)

	

1.19.4(Jan 1, 2022)

Fixes: #1505, #1484, #1479, #1474.

Changes:

	Full support of PDF page rectangles like /ArtBox etc.
	New global variable TESSDATA_PREFIX for comfortably checking presence of OCR support
	Changed Document.xref_set_key() such that dictionary keys will physically be removed if set to value "null".
	Changed Document.extract_font() to optionally return a dictionary (instead of a tuple).

Source code(tar.gz)
Source code(zip)

	

1.19.3(Dec 12, 2021)

Fixes:
#1351, #1417, #1418, #1430, #1433

	New or changed Pixmap methods color_topusage(), color_count(), warp(). Some of them solve #1397.
	New Annot method and property irt_xref, set_irt_xref(). Implements #1450.
	New Rect / IRect method torect() which creates a matrix to transform between given rectangles.
	Page.get_texttrace() now also supports non-horizontal text.

Source code(tar.gz)
Source code(zip)

	

1.19.2(Nov 20, 2021)

Improvements:

	Page.get_drawings() now includes area orientation for rectangles
	Page pixmap creation has a new parameter "dpi"
	New check for monochrome / unicolor pixmaps and number of colors

Fixes:
#1388, #1375, #1364, #1342, #1355, #1397, #1408.

Source code(tar.gz)
Source code(zip)

	

1.19.1(Oct 24, 2021)

OCR of a document page has been improved a lot compared to v1.19.0.
Text extractions now also come with an integrated sort.
Fixes: #1328

Source code(tar.gz)
Source code(zip)

	

1.19.0(Oct 17, 2021)

Introduces major new features like PDF journalling and OCR support by directly invoking Tesseract-OCR.
In addition, it is possible to detect whether object are covered (hidden) by other objects.

As part of the new version, the following issues have resolved:
#1313, #1311, #1290, #1286, #1287, #1284.

Source code(tar.gz)
Source code(zip)

	

1.18.19(Sep 16, 2021)

Fixes #1266

Source code(tar.gz)
Source code(zip)

	

1.18.18(Sep 16, 2021)

This version fixes #1257, #1252, #1244, #1241, #1234, #1236, #1227.

Source code(tar.gz)
Source code(zip)

	

1.18.17(Aug 24, 2021)

Source code(tar.gz)
Source code(zip)

	

1.18.16(Aug 8, 2021)

The fitz module now supports text extraction via a new subcommand "gettext". Among a couple of modes, preserving the original layout can be chosen.

Also fixed #1187, #1184, #1154, #1152 and #1146.

Source code(tar.gz)
Source code(zip)

	

1.18.15(Jul 10, 2021)

Apart from some minor fixes, this release introduces support for small caps in TextWriter based text output.

In addition, method Document.subset_fonts() now prefixes subsetted font names with the 6 upper case letter prefix as prescribed by the PDF standard.

List of fixed issues:
#1088, #1081, #1078, #1085.

Source code(tar.gz)
Source code(zip)

	

1.18.14(Jun 2, 2021)

The following habe been fixed:

	#1043
	#1053
	undocumented occasional error calculating envelopping rectangle for paths in Page.get_drawings()
	undocumented occasional loop in TextWriter.fill_textbox()
	added method Font.char_lengths() which returns a tuple of all character widths for a given string. An improved version of Font.text_length()
	greatly improved performance of Font.text_length()
	added various ways to delete multiple PDF pages, among them are slices and the Python del statement
	changed method Document.del_toc_item(): the item's title text will no longer be removed - instead the item is shown grayed-out to indicate its deletion.

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.14-cp36-cp36m-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.14-cp36-cp36m-manylinux2010_x86_64.whl(6.08 MB)
PyMuPDF-1.18.14-cp36-cp36m-win32.whl(4.70 MB)
PyMuPDF-1.18.14-cp36-cp36m-win_amd64.whl(5.10 MB)
PyMuPDF-1.18.14-cp37-cp37m-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.14-cp37-cp37m-manylinux2010_x86_64.whl(6.08 MB)
PyMuPDF-1.18.14-cp37-cp37m-win32.whl(4.70 MB)
PyMuPDF-1.18.14-cp37-cp37m-win_amd64.whl(5.10 MB)
PyMuPDF-1.18.14-cp38-cp38-macosx_10_9_x86_64.whl(5.31 MB)
PyMuPDF-1.18.14-cp38-cp38-manylinux2010_x86_64.whl(6.10 MB)
PyMuPDF-1.18.14-cp38-cp38-win32.whl(4.71 MB)
PyMuPDF-1.18.14-cp38-cp38-win_amd64.whl(5.11 MB)
PyMuPDF-1.18.14-cp39-cp39-macosx_10_9_x86_64.whl(5.31 MB)
PyMuPDF-1.18.14-cp39-cp39-manylinux2010_x86_64.whl(6.11 MB)
PyMuPDF-1.18.14-cp39-cp39-win32.whl(4.71 MB)
PyMuPDF-1.18.14-cp39-cp39-win_amd64.whl(5.11 MB)

	

1.18.13(May 5, 2021)

Method Page.insert_image has been rewritten for improved performance in standard cases. Also introduced option to re-use pre-existing images in the file directly to provide another performance boost.
Other changes:

	implemented or fixed #1042, #1041, #1037
	minor improvements in PDF EmbeddedFiles handling for better support of building PDF collections apps.

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.13-cp36-cp36m-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.13-cp36-cp36m-manylinux2010_x86_64.whl(6.07 MB)
PyMuPDF-1.18.13-cp36-cp36m-manylinux2014_aarch64.whl(6.14 MB)
PyMuPDF-1.18.13-cp36-cp36m-win32.whl(4.70 MB)
PyMuPDF-1.18.13-cp36-cp36m-win_amd64.whl(5.10 MB)
PyMuPDF-1.18.13-cp37-cp37m-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.13-cp37-cp37m-manylinux2010_x86_64.whl(6.07 MB)
PyMuPDF-1.18.13-cp37-cp37m-manylinux2014_aarch64.whl(6.14 MB)
PyMuPDF-1.18.13-cp37-cp37m-win32.whl(4.70 MB)
PyMuPDF-1.18.13-cp37-cp37m-win_amd64.whl(5.10 MB)
PyMuPDF-1.18.13-cp38-cp38-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.13-cp38-cp38-manylinux2010_x86_64.whl(6.08 MB)
PyMuPDF-1.18.13-cp38-cp38-manylinux2014_aarch64.whl(6.17 MB)
PyMuPDF-1.18.13-cp38-cp38-win32.whl(4.70 MB)
PyMuPDF-1.18.13-cp38-cp38-win_amd64.whl(5.10 MB)
PyMuPDF-1.18.13-cp39-cp39-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.13-cp39-cp39-manylinux2010_x86_64.whl(6.10 MB)
PyMuPDF-1.18.13-cp39-cp39-manylinux2014_aarch64.whl(6.19 MB)
PyMuPDF-1.18.13-cp39-cp39-win32.whl(4.70 MB)
PyMuPDF-1.18.13-cp39-cp39-win_amd64.whl(5.10 MB)

	

1.18.11(Apr 10, 2021)

Meta information for images embedded in document pages has been enriched by the so-called transformation matrix. It can be used to find out, what "happened" to the image rectangle to make it fit in its bbox on the page, like scaling and rotation.

Other changes are mostly minor bug fixes:
#990
#972

A new Page method get_image_info() is also available, which extracts image meta information from the page's TextPage - much like the corresponding Page.get_text("dict"), but without extracting any text or the image binary data themselves.

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.11-cp36-cp36m-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.11-cp36-cp36m-manylinux2010_x86_64.whl(6.07 MB)
PyMuPDF-1.18.11-cp36-cp36m-win32.whl(4.70 MB)
PyMuPDF-1.18.11-cp36-cp36m-win_amd64.whl(5.10 MB)
PyMuPDF-1.18.11-cp37-cp37m-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.11-cp37-cp37m-manylinux2010_x86_64.whl(6.07 MB)
PyMuPDF-1.18.11-cp37-cp37m-win32.whl(4.70 MB)
PyMuPDF-1.18.11-cp37-cp37m-win_amd64.whl(5.10 MB)
PyMuPDF-1.18.11-cp38-cp38-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.11-cp38-cp38-manylinux2010_x86_64.whl(6.08 MB)
PyMuPDF-1.18.11-cp38-cp38-win32.whl(4.70 MB)
PyMuPDF-1.18.11-cp38-cp38-win_amd64.whl(5.10 MB)
PyMuPDF-1.18.11-cp39-cp39-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.11-cp39-cp39-manylinux2010_x86_64.whl(6.10 MB)
PyMuPDF-1.18.11-cp39-cp39-win32.whl(4.70 MB)
PyMuPDF-1.18.11-cp39-cp39-win_amd64.whl(5.10 MB)

	

1.18.10(Mar 22, 2021)

Fixed: #941 #929 #927

	included PDF trailer access in Document.xref_get_key()
	added a number of functions for recovering text quads in "dict" / "rawdict" text extractions

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.10-cp36-cp36m-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.10-cp36-cp36m-manylinux2010_x86_64.whl(6.06 MB)
PyMuPDF-1.18.10-cp36-cp36m-win32.whl(4.69 MB)
PyMuPDF-1.18.10-cp36-cp36m-win_amd64.whl(5.09 MB)
PyMuPDF-1.18.10-cp37-cp37m-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.10-cp37-cp37m-manylinux2010_x86_64.whl(6.06 MB)
PyMuPDF-1.18.10-cp37-cp37m-win32.whl(4.69 MB)
PyMuPDF-1.18.10-cp37-cp37m-win_amd64.whl(5.09 MB)
PyMuPDF-1.18.10-cp38-cp38-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.10-cp38-cp38-manylinux2010_x86_64.whl(6.08 MB)
PyMuPDF-1.18.10-cp38-cp38-win32.whl(4.70 MB)
PyMuPDF-1.18.10-cp38-cp38-win_amd64.whl(5.10 MB)
PyMuPDF-1.18.10-cp39-cp39-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.10-cp39-cp39-manylinux2010_x86_64.whl(6.09 MB)
PyMuPDF-1.18.10-cp39-cp39-win32.whl(4.70 MB)
PyMuPDF-1.18.10-cp39-cp39-win_amd64.whl(5.10 MB)

	

1.18.9(Feb 26, 2021)

Fixed #888, #895, #896, #885, #922
Implemented #897 (text output right-to-left).

	Font subsetting now works without rewriting the respective text.
	Added a utility function to compute the quad of a text span for "dict" and "rawdict" text extraction.

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.9-cp36-cp36m-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.9-cp36-cp36m-manylinux2010_x86_64.whl(6.06 MB)
PyMuPDF-1.18.9-cp36-cp36m-win32.whl(4.69 MB)
PyMuPDF-1.18.9-cp36-cp36m-win_amd64.whl(5.09 MB)
PyMuPDF-1.18.9-cp37-cp37m-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.9-cp37-cp37m-manylinux2010_x86_64.whl(6.06 MB)
PyMuPDF-1.18.9-cp37-cp37m-win32.whl(4.69 MB)
PyMuPDF-1.18.9-cp37-cp37m-win_amd64.whl(5.09 MB)
PyMuPDF-1.18.9-cp38-cp38-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.9-cp38-cp38-manylinux2010_x86_64.whl(6.07 MB)
PyMuPDF-1.18.9-cp38-cp38-win32.whl(4.69 MB)
PyMuPDF-1.18.9-cp38-cp38-win_amd64.whl(5.09 MB)
PyMuPDF-1.18.9-cp39-cp39-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.9-cp39-cp39-manylinux2010_x86_64.whl(6.09 MB)
PyMuPDF-1.18.9-cp39-cp39-win32.whl(4.69 MB)
PyMuPDF-1.18.9-cp39-cp39-win_amd64.whl(5.09 MB)

	

1.18.8(Feb 4, 2021)

Fixes:

	#881
	#878

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.8-cp36-cp36m-macosx_10_9_x86_64.whl(5.28 MB)
PyMuPDF-1.18.8-cp36-cp36m-manylinux2010_x86_64.whl(6.05 MB)
PyMuPDF-1.18.8-cp36-cp36m-win32.whl(4.68 MB)
PyMuPDF-1.18.8-cp36-cp36m-win_amd64.whl(5.08 MB)
PyMuPDF-1.18.8-cp37-cp37m-macosx_10_9_x86_64.whl(5.28 MB)
PyMuPDF-1.18.8-cp37-cp37m-manylinux2010_x86_64.whl(6.05 MB)
PyMuPDF-1.18.8-cp37-cp37m-win32.whl(4.68 MB)
PyMuPDF-1.18.8-cp37-cp37m-win_amd64.whl(5.08 MB)
PyMuPDF-1.18.8-cp38-cp38-macosx_10_9_x86_64.whl(5.28 MB)
PyMuPDF-1.18.8-cp38-cp38-manylinux2010_x86_64.whl(6.06 MB)
PyMuPDF-1.18.8-cp38-cp38-win32.whl(4.68 MB)
PyMuPDF-1.18.8-cp38-cp38-win_amd64.whl(5.08 MB)
PyMuPDF-1.18.8-cp39-cp39-macosx_10_9_x86_64.whl(5.28 MB)
PyMuPDF-1.18.8-cp39-cp39-manylinux2010_x86_64.whl(6.07 MB)
PyMuPDF-1.18.8-cp39-cp39-win32.whl(4.68 MB)
PyMuPDF-1.18.8-cp39-cp39-win_amd64.whl(5.08 MB)

	

1.18.7(Feb 2, 2021)

Fixes:

	#844, #838, #823, #818, #814

Implemented enhancement requests:

	
#855, which allows font subsetting using package fontTools

	
#870, which allows convert_to_pdf method also for PDF documents.

	
#843, Document.tobytes() (formerly Document.write()) now also support linearized output. Plus several extensions / improvements around supporting Python fileobjects.

	
Added new methods to quickly determine whether a PDF has annotations or links.

	
Extended the Document.scrub() method with a new parameter, which allows to also remove page thumbnails.

	
Added methods to directly inquire and set values in PDF objects - without the need to manipulating PDF object sources in an unwieldy way - see methods Document.xref_set_key() / Document.xref_get_key().

Continued the process of changing the naming convention for class methods and attributes to "snake_case". As announced before, this is a tedious, error-prone process, and requires special care to maintain a high backlevel support for existing scripts.
In future versions - probably synchronously to MuPDF v1.19.0 - we will remove definitions of old names, but a method for re-activating old aliases will remain available.

Source code(tar.gz)
Source code(zip)

	

1.18.6(Jan 7, 2021)

The recent introduction of "Discussions" by Github has been very motivating for our users.
Based on their feedback, several enhancement have been implemented.
Here is a selection:

	Most Python functions now have typing / annotation support .
	For PDF table-of-contents items, colors are now supported (reading and writing)
	PDF page label support for reading and writing
	Support personalized tagging of new annotations, fields and links for easier selection of relevant objects.

There also is a number of fixes - please consult the documentation.

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.6-cp36-cp36m-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.6-cp36-cp36m-manylinux2010_x86_64.whl(6.03 MB)
PyMuPDF-1.18.6-cp36-cp36m-win32.whl(4.67 MB)
PyMuPDF-1.18.6-cp36-cp36m-win_amd64.whl(5.07 MB)
PyMuPDF-1.18.6-cp37-cp37m-macosx_10_9_x86_64.whl(5.31 MB)
PyMuPDF-1.18.6-cp37-cp37m-manylinux2010_x86_64.whl(6.03 MB)
PyMuPDF-1.18.6-cp37-cp37m-win32.whl(4.67 MB)
PyMuPDF-1.18.6-cp37-cp37m-win_amd64.whl(5.07 MB)
PyMuPDF-1.18.6-cp38-cp38-macosx_10_9_x86_64.whl(5.31 MB)
PyMuPDF-1.18.6-cp38-cp38-manylinux2010_x86_64.whl(6.04 MB)
PyMuPDF-1.18.6-cp38-cp38-win32.whl(4.67 MB)
PyMuPDF-1.18.6-cp38-cp38-win_amd64.whl(5.08 MB)
PyMuPDF-1.18.6-cp39-cp39-macosx_10_9_x86_64.whl(5.31 MB)
PyMuPDF-1.18.6-cp39-cp39-manylinux2010_x86_64.whl(6.06 MB)
PyMuPDF-1.18.6-cp39-cp39-win32.whl(4.67 MB)
PyMuPDF-1.18.6-cp39-cp39-win_amd64.whl(5.08 MB)

	

1.18.5(Dec 17, 2020)

Font metrics handling has been improved: text box writing now observes the relevant font properties when determining line heights.
In this course a new option has been introduced, which allows getting text bboxes (glyphs, spans, text search quads, etc.) that more exactly wrap the text only - as opposed to always returning line height bboxes.

Fixes:

	#771
	#768
	#750
	#739
	#728
	#727

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.5-cp36-cp36m-manylinux2010_x86_64.whl(6.02 MB)
PyMuPDF-1.18.5-cp36-cp36m-win32.whl(4.67 MB)
PyMuPDF-1.18.5-cp36-cp36m-win_amd64.whl(5.06 MB)
PyMuPDF-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.5-cp37-cp37m-manylinux2010_x86_64.whl(6.02 MB)
PyMuPDF-1.18.5-cp37-cp37m-win32.whl(4.67 MB)
PyMuPDF-1.18.5-cp37-cp37m-win_amd64.whl(5.06 MB)
PyMuPDF-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.5-cp38-cp38-manylinux2010_x86_64.whl(6.03 MB)
PyMuPDF-1.18.5-cp38-cp38-win32.whl(4.67 MB)
PyMuPDF-1.18.5-cp38-cp38-win_amd64.whl(5.07 MB)
PyMuPDF-1.18.5-cp39-cp39-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.5-cp39-cp39-manylinux2010_x86_64.whl(6.04 MB)
PyMuPDF-1.18.5-cp39-cp39-win32.whl(4.67 MB)
PyMuPDF-1.18.5-cp39-cp39-win_amd64.whl(5.07 MB)

	

1.18.4(Nov 20, 2020)

	
Improved PDF Optional Content support

	
Started overhaul of method and attribute naming

	
Introduced support of Popup annotations

	
Implemented the following fixes:

	#727
	#726
	#724

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.4-cp27-cp27m-macosx_10_9_x86_64.whl(5.30 MB)
PyMuPDF-1.18.4-cp27-cp27m-manylinux2010_x86_64.whl(6.00 MB)
PyMuPDF-1.18.4-cp27-cp27m-win32.whl(4.66 MB)
PyMuPDF-1.18.4-cp27-cp27m-win_amd64.whl(5.07 MB)
PyMuPDF-1.18.4-cp27-cp27mu-manylinux2010_x86_64.whl(6.00 MB)
PyMuPDF-1.18.4-cp35-cp35m-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.4-cp35-cp35m-manylinux2010_x86_64.whl(6.01 MB)
PyMuPDF-1.18.4-cp35-cp35m-win32.whl(4.67 MB)
PyMuPDF-1.18.4-cp35-cp35m-win_amd64.whl(5.06 MB)

	

1.18.3(Nov 9, 2020)

As a major new feature, the PDF Optional Content concept is now widely supported.

The following fixes have been implemented:

	#714
	#711
	#707
	#713
	#709

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.3-cp27-cp27m-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.3-cp27-cp27m-manylinux2010_x86_64.whl(5.99 MB)
PyMuPDF-1.18.3-cp27-cp27m-win32.whl(4.66 MB)
PyMuPDF-1.18.3-cp27-cp27m-win_amd64.whl(5.06 MB)
PyMuPDF-1.18.3-cp27-cp27mu-manylinux2010_x86_64.whl(5.99 MB)
PyMuPDF-1.18.3-cp35-cp35m-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.3-cp35-cp35m-manylinux2010_x86_64.whl(5.99 MB)
PyMuPDF-1.18.3-cp35-cp35m-win32.whl(4.66 MB)
PyMuPDF-1.18.3-cp35-cp35m-win_amd64.whl(5.06 MB)
PyMuPDF-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.3-cp36-cp36m-manylinux2010_x86_64.whl(5.99 MB)
PyMuPDF-1.18.3-cp36-cp36m-win32.whl(4.66 MB)
PyMuPDF-1.18.3-cp36-cp36m-win_amd64.whl(5.06 MB)
PyMuPDF-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.3-cp37-cp37m-manylinux2010_x86_64.whl(5.99 MB)
PyMuPDF-1.18.3-cp37-cp37m-win32.whl(4.66 MB)
PyMuPDF-1.18.3-cp37-cp37m-win_amd64.whl(5.06 MB)
PyMuPDF-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.3-cp38-cp38-manylinux2010_x86_64.whl(6.01 MB)
PyMuPDF-1.18.3-cp38-cp38-win32.whl(4.66 MB)
PyMuPDF-1.18.3-cp38-cp38-win_amd64.whl(5.06 MB)
PyMuPDF-1.18.3-cp39-cp39-macosx_10_9_x86_64.whl(5.29 MB)
PyMuPDF-1.18.3-cp39-cp39-manylinux2010_x86_64.whl(6.02 MB)
PyMuPDF-1.18.3-cp39-cp39-win32.whl(4.66 MB)
PyMuPDF-1.18.3-cp39-cp39-win_amd64.whl(5.06 MB)

	

1.18.2(Oct 27, 2020)

This resolves

	#575
	#697
	#691

and removes the hit_max parameter from text searching. In addition, hyphenated words around line breaks are still found.

The use of the clip parameter in text searches and text extractions now only includes characters whose bboxes are fully contained in the clip rctangle.

Source code(tar.gz)
Source code(zip)
PyMuPDF-1.18.2-cp36-cp36m-macosx_10_9_x86_64.whl(5.28 MB)
PyMuPDF-1.18.2-cp36-cp36m-manylinux2010_x86_64.whl(5.96 MB)
PyMuPDF-1.18.2-cp36-cp36m-win32.whl(4.65 MB)
PyMuPDF-1.18.2-cp36-cp36m-win_amd64.whl(5.04 MB)
PyMuPDF-1.18.2-cp37-cp37m-macosx_10_9_x86_64.whl(5.28 MB)
PyMuPDF-1.18.2-cp37-cp37m-manylinux2010_x86_64.whl(5.96 MB)
PyMuPDF-1.18.2-cp37-cp37m-win32.whl(4.65 MB)
PyMuPDF-1.18.2-cp37-cp37m-win_amd64.whl(5.04 MB)
PyMuPDF-1.18.2-cp38-cp38-macosx_10_9_x86_64.whl(5.28 MB)
PyMuPDF-1.18.2-cp38-cp38-manylinux2010_x86_64.whl(5.97 MB)
PyMuPDF-1.18.2-cp38-cp38-win32.whl(4.65 MB)
PyMuPDF-1.18.2-cp38-cp38-win_amd64.whl(5.04 MB)
PyMuPDF-1.18.2-cp39-cp39-macosx_10_9_x86_64.whl(5.28 MB)
PyMuPDF-1.18.2-cp39-cp39-manylinux2010_x86_64.whl(5.98 MB)
PyMuPDF-1.18.2-cp39-cp39-win32.whl(4.65 MB)
PyMuPDF-1.18.2-cp39-cp39-win_amd64.whl(5.04 MB)

Owner

PyMuPDF

This represents the central repository, PyMuPDF and related repositories

 GitHub

Simple HTML and PDF document generator for Python - with built-in support for popular data analysis and plotting libraries.

Esparto is a simple HTML and PDF document generator for Python. Its primary use is for generating shareable single page reports with content from popular analytics and data science libraries.

 76 Dec 12, 2022

PyPDF2 is a pure-python PDF library capable of splitting, merging together, cropping, and transforming the pages of PDF files.

PyPDF2 is a pure-python PDF library capable of splitting, merging together, cropping, and transforming the pages of PDF files. It can also add custom data, viewing options, and passwords to PDF files. It can retrieve text and metadata from PDFs as well as merge entire files together.

 5k Jan 4, 2023

Python PDF Parser (Not actively maintained). Check out pdfminer.six.

PDFMiner PDFMiner is a text extraction tool for PDF documents. Warning: As of 2020, PDFMiner is not actively maintained. The code still works, but thi

 4.9k Jan 4, 2023

A python library for extracting text from PDFs without losing the formatting of the PDF content.

Multilingual PDF to Text Install Package from Pypi Install it using pip. pip install multilingual-pdf2text The library uses Tesseract which can be ins

 49 Nov 7, 2022

A Python tool to generate a static HTML file that represents the internal structure of a PDF file

PDFSyntax A Python tool to generate a static HTML file that represents the internal structure of a PDF file At some point the low-level functions deve

 394 Dec 30, 2022

Performing the following operations using python on PDF.

Python PDF Handling Tutorial Python is a highly versatile language with a huge set of libraries. It is a high level language with simple syntax. Pytho

 131 Dec 16, 2022

Camelot is a Python library that can help you extract tables from PDFs!

A Python library to extract tabular data from PDFs

 1.8k Jan 3, 2023

Python script that split PDF files.

Automatic PDF Splitter This script can create new single-page PDFs files from multipaged PDFs. Requirements Python 3.0+ # Debian distros
sudo apt-get

 5 Apr 2, 2022

borb is a library for reading, creating and manipulating PDF files in python.

borb is a library for reading, creating and manipulating PDF files in python.

 2.9k Jan 1, 2023

Python lib for Simple PDF text extraction

Python lib for Simple PDF text extraction

 651 Jan 1, 2023

x-ray is a Python library for finding bad redactions in PDF documents.

A tool to detect whether a PDF has a bad redaction

 73 Dec 19, 2022

This book will take you on an exploratory journey through the PDF format, and the borb Python library.

This book will take you on an exploratory journey through the PDF format, and the borb Python library.

 281 Jan 1, 2023

Simple python tool created for downloading PDF.

PDFdownloader Usage Open PDF in full-screen mode Run scan.exe Enter how many pages you want to scan Focus PDF After scanning is done, run merge.exe En

 5 Oct 27, 2021

A simple pdf size compressing telegram robot witten in python.

Pdf Compressor Telegram Bot ##About : A simple pdf size compressing telegram robot witten in python. Mostly useful for digital documentation. Deploy t

 22 Oct 28, 2022

Converting Html files to pdf using python script, pdfkit module and wkhtmltopdf.

Html-to-pdf-pdfkit-wkhtml- This repository has code for converting local html files and online html resources into pdf. It is an python script which u

 1 Nov 9, 2021

Auto Convert PDFs to png files in python

This python tool, which is an application of PyMuPDF module, could auto convert PDFs to png files

 4 Dec 5, 2021

Small python-gtk application, which helps the user to merge or split pdf documents and rotate, crop and rearrange their pages using an interactive and intuitive graphical interface

Small python-gtk application, which helps the user to merge or split pdf documents and rotate, crop and rearrange their pages using an interactive and intuitive graphical interface

 1.8k Dec 29, 2022

pikepdf is a Python library for reading and writing PDF files.

A Python library for reading and writing PDF, powered by qpdf

 1.6k Jan 3, 2023

A simple Python script to convert multiple images (well technically also a single image) into a pdf.

PythonImage2PDF A simple Python script to convert multiple images into a single PDF-document. Created basically for only my own needs for converting m

 1 Jun 28, 2022

2022.PythonRepo

