The Ultimate FREE Machine Learning Study Plan

Overview

The Ultimate FREE Machine Learning Study Plan

A complete study plan to become a Machine Learning Engineer with links to all FREE resources. If you finish the list you will be equipped with enough theoretical and practical experience to get started in the industry! I tried to limit the resources to a minimum, but some courses are extensive.

Watch the video on YouTube for instructions:
Alt text
https://www.youtube.com/watch?v=dYvt3vSJaQA

IMPORTANT:

  • This list is not sponsored by any of the mentioned links! I did a lot of the courses myself and can highly recommend them!
  • This list takes a lot of time and effort to finish if you want to do it properly! The list does not look that long, but don't underestimate it.

How to use the Plan:

  • For theory lectures: Follow along, take notes, and repeat the notes afterwards.
  • For practical lectures/courses: Follow along, take notes. If they provide exercises, do them!!! Do not just google the answer, but try to solve it yourself first!
  • For coding tutorials: Code along, and after the video try to code it on your own again.
  • Step 3 is critical! Your theoretical knowledge is worthless if you don't know how to apply it to real world problems! Do as many personal projects and competitions as you can! You don't have to wait with step 3 until you finished the other parts, I recommend starting with a side project or kaggle competition after you finished part 1.1 (Andrew Ng's course).

The Plan

0. Prerequisites

1. Basics Machine Learning

2. Deep Learning

Optional:

3. Competitions and Own Projects

4. Prep for Interviews

Next Level

  • Make your own projects to show what you have learned.
  • Reproduce paper and implement the algorithms.
  • Write a blog to explain what you have learned.
  • Contribute to ML/DL related open source projects (sklearn, pytorch, fastai, ...).
  • Get into Kaggle competitions.

Further readings

GitHub:

Further resources added by the community

Contributions are welcome! If you can recommend any other ressources, feel free to open a pull request :)

You might also like...
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

cuML - RAPIDS Machine Learning Library
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

mlpack: a scalable C++ machine learning library --
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

A library of extension and helper modules for Python's data analysis and machine learning libraries.
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Uplift modeling and causal inference with machine learning algorithms
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Comments
  • Grokking Algorithms Book's link added at the line 100

    Grokking Algorithms Book's link added at the line 100

    A link to Grokking Algorithms book added at the last of the further resources - It isn't mandatory to know algorithms and data structures but reading this book can help learners to know basic algorithms and these implementations in order to have a better view. Also, this book has an eloquent way of teaching which can help people to understand algorithms easily.

    Sincerely, Majid Ghasemi

    opened by majidghassemi 2
  • Added resources for Python, Deep Learning and others

    Added resources for Python, Deep Learning and others

    I have added the following:

    1. Automate the Boring Stuff with Python Book
    2. Neural Networks series by 3Blue1Brown
    3. An article on beginner level datasets
    4. An article on the life cycle of a data science project
    opened by nirmalya8 2
  • add gap between two sections

    add gap between two sections

    Hey, Patrick. I closed my previous pull request because It showing It has conflicts.

    Thus, I created this pull requested, and In this pull requested, I only add a gap between sections and add a link to a youtube video at top of the image.

    Thanks! Gaurav

    opened by ghost 0
  • Update README.md

    Update README.md

    1. added - Essentials of Statistics by Monica Wahi in Statistics section
    2. corrected - some spelling errors
    3. added - Getting Started with Applied Machine Learning in Further readings section
    4. made - some changes in Futher readings section https:// ---> ABC found - dead link in Further readings section (https://towardsdatascience.com/beginners-guide-to-machine-learning-with-python-b9ff35bc9c51)
    opened by waiyanps 0
Owner
Patrick Loeber (Python Engineer)
I create free content about Python and Machine Learning on YouTube and my website.
Patrick Loeber (Python Engineer)
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 9, 2023
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

Vowpal Wabbit 8.1k Dec 30, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 3, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 3, 2023
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 7, 2023
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 9, 2023
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

null 2 Aug 23, 2022
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah)  Xue 0 Jan 31, 2022