Anti-UAV base on PaddleDetection

Overview

Paddle-Anti-UAV

Anti-UAV base on PaddleDetection

Background

UAVs are very popular and we can see them in many public spaces, such as parks and playgrounds. Most people use UAVs for taking photos. However, many areas like airport forbiden UAVs since they are potentially dangerous. In this case, we need to detect the flying UAVs in these areas.

In this repository, we show how to train a detection model using PaddleDetection.

Data preparation

The dataset can be found here. We direcly download the test-dev split composed of 140 videos train the detection model.

  • Download the test-dev dataset.
  • Run unzip Anti_UAV_test_dev.zip -d Anti_UAV.
  • Run python get_image_label.py. In this step, you may change the path to the videos and the value of interval.

After the above steps, you will get a MSCOCO-style datasst for object detection.

Install PaddleDetection

Please refer to this link.

We use python=3.7, Paddle=2.2.1, CUDA=10.2.

Train PP-YOLO

We use PP-YOLO as the detector.

  • Run git clone https://github.com/PaddlePaddle/PaddleDetection.git. Note that you should finish this step when you install PaddleDetection.
  • Move the anti-UAV dataset to dataset.
  • Move anti_uav.yml to configs/datasets, move ppyolo_r50vd_dcn_1x_antiuav.yml to configs/ppyolo and move ppyolo_r50vd_dcn_antiuav.yml to configs/ppyolo/_base.
  • Keep the value of anchors in configs/ppyolo/_base/ppyolo_reader.yml the same as ppyolo_r50vd_dcn_antiuav.yml.
  • Run python -m paddle.distributed.launch --log_dir=./ppyolo_dygraph/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_antiuav.yml &>ppyolo_dygraph.log 2>&1 &. Note that you may change the arguments, such as batch_size and gups.

Inference

Please refer to the infernce section on this webpage. You can just switch the configeration file and trained model to your own files.

You might also like...
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Artificial Intelligence search algorithm base on Pacman
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Owner
Qingzhong Wang
Qingzhong Wang
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

null 129 Jan 4, 2023
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

null 79 Jan 6, 2023
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video ?? Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 7, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

null 0 Nov 13, 2021
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 6, 2023
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 7, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF implementation. Contact Jon Barron if you encounter any issues.

Google 625 Dec 30, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

null 11 Nov 3, 2022