Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Overview

Downloads Generic badge Generic badge example workflow Open issues

Auto Tensorflow - Mission:

Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

To make Deep Learning on Tensorflow absolutely easy for the masses with its low code framework and also increase trust on ML models through What-IF model explainability.

Under the hood:

Built on top of the powerful Tensorflow ecosystem tools like TFX , TF APIs and What-IF Tool , the library automatically does all the heavy lifting internally like EDA, schema discovery, feature engineering, HPT, model search etc. This empowers developers to focus only on building end user applications quickly without any knowledge of Tensorflow, ML or debugging. Built for handling large volume of data / BigData - using only TF scalable components. Moreover the models trained with auto-tensorflow can directly be deployed on any cloud like GCP / AWS / Azure.

Official Launch: https://youtu.be/sil-RbuckG0

Features:

  1. Build Classification / Regression models on CSV data
  2. Automated Schema Inference
  3. Automated Feature Engineering
    • Discretization
    • Scaling
    • Normalization
    • Text Embedding
    • Category encoding
  4. Automated Model build for mixed data types( Continuous, Categorical and Free Text )
  5. Automated Hyper-parameter tuning
  6. Automated GPU Distributed training
  7. Automated UI based What-IF analysis( Fairness, Feature Partial dependencies, What-IF )
  8. Control over complexity of model
  9. No dependency over Pandas / SKLearn
  10. Can handle dataset of any size - including multiple CSV files

Tutorials:

  1. Open In Colab - Auto Classification on CSV data
  2. Open In Colab - Auto Regression on CSV data

Setup:

  1. Install library
    • PIP(Recommended): pip install auto-tensorflow
    • Nightly: pip install git+https://github.com/rafiqhasan/auto-tensorflow.git
  2. Works best on UNIX/Linux/Debian/Google Colab/MacOS

Usage:

  1. Initialize TFAuto Engine
from auto_tensorflow.tfa import TFAuto
tfa = TFAuto(train_data_path='/content/train_data/', test_data_path='/content/test_data/', path_root='/content/tfauto')
  1. Step 1 - Automated EDA and Schema discovery
tfa.step_data_explore(viz=True) ##Viz=False for no visualization
  1. Step 2 - Automated ML model build and train
tfa.step_model_build(label_column = 'price', model_type='REGRESSION', model_complexity=1)
  1. Step 3 - Automated What-IF Tool launch
tfa.step_model_whatif()

API Arguments:

  • Method TFAuto

    • train_data_path: Path where training data is stored
    • test_data_path: Path where Test / Eval data is stored
    • path_root: Directory for running TFAuto( Directory should NOT exist )
  • Method step_data_explore

    • viz: Is data visualization required ? - True or False( Default )
  • Method step_model_build

    • label_column: The feature to be used as Label
    • model_type: Either of 'REGRESSION'( Default ), 'CLASSIFICATION'
    • model_complexity:
      • 0 : Model with default hyper-parameters
      • 1 (Default): Model with automated hyper-parameter tuning
      • 2 : Complexity 1 + Advanced fine-tuning of Text layers

Current limitations:

There are a few limitations in the initial release but we are working day and night to resolve these and add them as future features.

  1. Doesn't support Image / Audio data

Future roadmap:

  1. Add support for Timeseries / Audio / Image data
  2. Add feature to download full pipeline model Python code for advanced tweaking

Release History:

1.3.2 - 27/11/2021 - Release Notes

1.3.1 - 18/11/2021 - Release Notes

1.2.0 - 24/07/2021 - Release Notes

1.1.1 - 14/07/2021 - Release Notes

1.0.1 - 07/07/2021 - Release Notes

Comments
  • Failed to install 1.2.0

    Failed to install 1.2.0

    Describe the bug Does not resolve dependency 👍 Show error when I run; pip install auto-tensorflow I got this message: Could not find a version that matches keras-nightly~=2.5.0.dev

    To Reproduce Steps to reproduce the behavior: pip install auto-tensorflow Expected behavior Install auto-tensorflow

    Versions:

    • Auto-Tensorflow:1.2.0
    • Tensorflow:
    • Tensorflow-Extended:

    Additional context Add any other context about the problem here.

    wontfix 
    opened by HenrryVargas 8
  • Colab Regression Example No Longer Working?

    Colab Regression Example No Longer Working?

    Trying to run the Colab Regression notebook. All dependencies get installed, I Restart and Run All to start the code. It errors out here:

    ##Step 1
    ##Run Data setup -> Infer Schema, find anomalies, create profile and show viz
    tfa.step_data_explore(viz=False)
    
    Data: Pipeline execution started...
    WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
    WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
    WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
    ERROR:absl:Execution 2 failed.
    ---------------------------------------------------------------------------
    TypeCheckError                            Traceback (most recent call last)
    [<ipython-input-6-7e17a616f197>](https://localhost:8080/#) in <module>
          1 ##Step 1
          2 ##Run Data setup -> Infer Schema, find anomalies, create profile and show viz
    ----> 3 tfa.step_data_explore(viz=False)
    
    14 frames
    [/usr/local/lib/python3.7/dist-packages/auto_tensorflow/tfa.py](https://localhost:8080/#) in step_data_explore(self, viz)
       1216     Viz: (False) Is data visualization required ?
       1217     '''
    -> 1218     self.pipeline = self.tfadata.run_initial(self._train_data_path, self._test_data_path, self._tfx_root, self._metadata_db_root, self.tfautils, viz)
       1219     self.generate_config_json()
       1220 
    
    [/usr/local/lib/python3.7/dist-packages/auto_tensorflow/tfa.py](https://localhost:8080/#) in run_initial(self, _train_data_path, _test_data_path, _tfx_root, _metadata_db_root, tfautils, viz)
        211     #Run data pipeline
        212     print("Data: Pipeline execution started...")
    --> 213     LocalDagRunner().run(self.pipeline)
        214     self._run = True
        215 
    
    [/usr/local/lib/python3.7/dist-packages/tfx/orchestration/portable/tfx_runner.py](https://localhost:8080/#) in run(self, pipeline)
         76     c = compiler.Compiler()
         77     pipeline_pb = c.compile(pipeline)
    ---> 78     return self.run_with_ir(pipeline_pb)
    
    [/usr/local/lib/python3.7/dist-packages/tfx/orchestration/local/local_dag_runner.py](https://localhost:8080/#) in run_with_ir(self, pipeline)
         85           with metadata.Metadata(connection_config) as mlmd_handle:
         86             partial_run_utils.snapshot(mlmd_handle, pipeline)
    ---> 87         component_launcher.launch()
         88         logging.info('Component %s is finished.', node_id)
    
    [/usr/local/lib/python3.7/dist-packages/tfx/orchestration/portable/launcher.py](https://localhost:8080/#) in launch(self)
        543               executor_watcher.address)
        544           executor_watcher.start()
    --> 545         executor_output = self._run_executor(execution_info)
        546       except Exception as e:  # pylint: disable=broad-except
        547         execution_output = (
    
    [/usr/local/lib/python3.7/dist-packages/tfx/orchestration/portable/launcher.py](https://localhost:8080/#) in _run_executor(self, execution_info)
        418     outputs_utils.make_output_dirs(execution_info.output_dict)
        419     try:
    --> 420       executor_output = self._executor_operator.run_executor(execution_info)
        421       code = executor_output.execution_result.code
        422       if code != 0:
    
    [/usr/local/lib/python3.7/dist-packages/tfx/orchestration/portable/beam_executor_operator.py](https://localhost:8080/#) in run_executor(self, execution_info, make_beam_pipeline_fn)
         96         make_beam_pipeline_fn=make_beam_pipeline_fn)
         97     executor = self._executor_cls(context=context)
    ---> 98     return python_executor_operator.run_with_executor(execution_info, executor)
    
    [/usr/local/lib/python3.7/dist-packages/tfx/orchestration/portable/python_executor_operator.py](https://localhost:8080/#) in run_with_executor(execution_info, executor)
         57   output_dict = copy.deepcopy(execution_info.output_dict)
         58   result = executor.Do(execution_info.input_dict, output_dict,
    ---> 59                        execution_info.exec_properties)
         60   if not result:
         61     # If result is not returned from the Do function, then try to
    
    [/usr/local/lib/python3.7/dist-packages/tfx/components/statistics_gen/executor.py](https://localhost:8080/#) in Do(self, input_dict, output_dict, exec_properties)
        138             stats_api.GenerateStatistics(stats_options)
        139             | 'WriteStatsOutput[%s]' % split >>
    --> 140             stats_api.WriteStatisticsToBinaryFile(output_path))
        141         logging.info('Statistics for split %s written to %s.', split,
        142                      output_uri)
    
    [/usr/local/lib/python3.7/dist-packages/apache_beam/pvalue.py](https://localhost:8080/#) in __or__(self, ptransform)
        135 
        136   def __or__(self, ptransform):
    --> 137     return self.pipeline.apply(ptransform, self)
        138 
        139 
    
    [/usr/local/lib/python3.7/dist-packages/apache_beam/pipeline.py](https://localhost:8080/#) in apply(self, transform, pvalueish, label)
        651     if isinstance(transform, ptransform._NamedPTransform):
        652       return self.apply(
    --> 653           transform.transform, pvalueish, label or transform.label)
        654 
        655     if not isinstance(transform, ptransform.PTransform):
    
    [/usr/local/lib/python3.7/dist-packages/apache_beam/pipeline.py](https://localhost:8080/#) in apply(self, transform, pvalueish, label)
        661       old_label, transform.label = transform.label, label
        662       try:
    --> 663         return self.apply(transform, pvalueish)
        664       finally:
        665         transform.label = old_label
    
    [/usr/local/lib/python3.7/dist-packages/apache_beam/pipeline.py](https://localhost:8080/#) in apply(self, transform, pvalueish, label)
        710 
        711       if type_options is not None and type_options.pipeline_type_check:
    --> 712         transform.type_check_outputs(pvalueish_result)
        713 
        714       for tag, result in ptransform.get_named_nested_pvalues(pvalueish_result):
    
    [/usr/local/lib/python3.7/dist-packages/apache_beam/transforms/ptransform.py](https://localhost:8080/#) in type_check_outputs(self, pvalueish)
        464 
        465   def type_check_outputs(self, pvalueish):
    --> 466     self.type_check_inputs_or_outputs(pvalueish, 'output')
        467 
        468   def type_check_inputs_or_outputs(self, pvalueish, input_or_output):
    
    [/usr/local/lib/python3.7/dist-packages/apache_beam/transforms/ptransform.py](https://localhost:8080/#) in type_check_inputs_or_outputs(self, pvalueish, input_or_output)
        495                 hint=hint,
        496                 actual_type=pvalue_.element_type,
    --> 497                 debug_str=type_hints.debug_str()))
        498 
        499   def _infer_output_coder(self, input_type=None, input_coder=None):
    
    TypeCheckError: Output type hint violation at WriteStatsOutput[train]: expected <class 'apache_beam.pvalue.PDone'>, got <class 'str'>
    Full type hint:
    IOTypeHints[inputs=((<class 'tensorflow_metadata.proto.v0.statistics_pb2.DatasetFeatureStatisticsList'>,), {}), outputs=((<class 'apache_beam.pvalue.PDone'>,), {})]
    File "<frozen importlib._bootstrap>", line 677, in _load_unlocked
    File "<frozen importlib._bootstrap_external>", line 728, in exec_module
    File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
    File "/usr/local/lib/python3.7/dist-packages/tensorflow_data_validation/api/stats_api.py", line 113, in <module>
        class WriteStatisticsToBinaryFile(beam.PTransform):
    File "/usr/local/lib/python3.7/dist-packages/apache_beam/typehints/decorators.py", line 776, in annotate_input_types
        *converted_positional_hints, **converted_keyword_hints)
    
    based on:
      IOTypeHints[inputs=None, outputs=((<class 'apache_beam.pvalue.PDone'>,), {})]
      File "<frozen importlib._bootstrap>", line 677, in _load_unlocked
      File "<frozen importlib._bootstrap_external>", line 728, in exec_module
      File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
      File "/usr/local/lib/python3.7/dist-packages/tensorflow_data_validation/api/stats_api.py", line 113, in <module>
          class WriteStatisticsToBinaryFile(beam.PTransform):
      File "/usr/local/lib/python3.7/dist-packages/apache_beam/typehints/decorators.py", line 863, in annotate_output_types
          f._type_hints = th.with_output_types(return_type_hint)  # pylint: disable=protected-access
    
    opened by windowshopr 2
  • Dump when training Text column model on GPUs

    Dump when training Text column model on GPUs

    Describe the bug The model dumps with error when training a model on GPU runtime

    To Reproduce Train a model with Free text column on GPU device

    Expected behavior Should not give any error

    Versions:

    • Auto-Tensorflow: 1.0.1
    • Tensorflow: 2.5.0
    • Tensorflow-Extended: 0.29.0

    Additional context Add any other context about the problem here.

    bug 
    opened by rafiqhasan 2
  • Add automated - advanced feature engineering

    Add automated - advanced feature engineering

    Is your feature request related to a problem? Please describe. Yes

    Describe the solution you'd like Add more feature engineering options for automated consideration:

    1. Squared
    2. Square root
    3. Min-Max scaling( Normalization is already there )
    4. etc

    Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

    Additional context Add any other context or screenshots about the feature request here.

    enhancement 
    opened by rafiqhasan 1
  • Known limitations

    Known limitations

    There are a few limitations in the initial release but we are working day and night to resolve these and add them as future features.

    1. Doesn't support Image / Audio data
    2. Doesn't support - quote delimited CSVs( TFX doesn't support qCSV yet )
    3. Classification only supports integer labels from 0 to N
    enhancement 
    opened by rafiqhasan 1
  • When AutoTF will be released for Time Series ?

    When AutoTF will be released for Time Series ?

    Is your feature request related to a problem? Please describe. A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]

    Describe the solution you'd like A clear and concise description of what you want to happen.

    Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

    Additional context Add any other context or screenshots about the feature request here.

    enhancement 
    opened by gulabpatel 1
Releases(1.3.4)
  • 1.3.4(Dec 9, 2022)

    • Fixed bugs
    • Cleaned up PIP dependencies for faster installation

    Full Changelog: https://github.com/rafiqhasan/auto-tensorflow/compare/1.3.3...1.3.4

    Source code(tar.gz)
    Source code(zip)
  • 1.3.3(Dec 9, 2022)

  • 1.3.2(Nov 26, 2021)

    • Added bucketization feature engineering
    • Added more diverse HPT options
    • Replaced RELU with SELU
    • Better accuracy on regression models
    • Changed HPT objective for classification models
    • Multiple improvisations for higher accuracy models

    Full Changelog: https://github.com/rafiqhasan/auto-tensorflow/compare/1.3.1...1.3.2

    Source code(tar.gz)
    Source code(zip)
  • 1.3.1(Nov 18, 2021)

    Features:

    1. Upgraded to TF 2.6.0
    2. Upgraded to TFX 1.4.0
    3. Added new feature engineering functions
    4. Added capability to handle multiple line CSVs
    5. Keras Tuner functionality now more optimised and HPT runs faster
    Source code(tar.gz)
    Source code(zip)
  • 1.2.0(Jul 24, 2021)

    1.2.0 - 07/24/2021

    • Upgraded to TFX 1.0.0
    • Major performance fixes
    • Fixed bugs
    • Added more features:
      • TFX CSVExampleGen speedup
      • Added more feature engineering options
    Source code(tar.gz)
    Source code(zip)
  • 1.1.1(Jul 20, 2021)

    1.1.1 - 07/14/2021

    • Fixed bugs
    • Added more features:
      • Added complexity = 2 for automated tunable textual layers
      • Textual label for Classification
      • Imbalanced label handling
      • GPU fixes
    Source code(tar.gz)
    Source code(zip)
  • 1.0.1(Jul 20, 2021)

Owner
Hasan Rafiq
Technology enthusiast working @ Google: Google Cloud, Machine Learning, Tensorflow, Python
Hasan Rafiq
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 8, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

null 77 Dec 24, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 9, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-driven approaches built around these algorithms enable the simplification of creating faster and smaller models for the ML performance community at large.

Neural Magic 1.5k Dec 30, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
A framework for attentive explainable deep learning on tabular data

?? kendrite A framework for attentive explainable deep learning on tabular data ?? Quick start kedro run ?? Built upon Technology Description Links ke

Marnix Koops 3 Nov 6, 2021
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 6, 2023
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 3, 2023
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 8, 2023
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

null 1.3k Dec 25, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 5, 2023
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

null 17 Dec 19, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 7, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022