(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

Related tags

Deep Learning CLNet
Overview

CLNet

(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

Citing CLNet

If you find the CLNet code useful, please consider citing:

@inproceedings{zhao2021progressive,
  title={Progressive Correspondence Pruning by Consensus Learning},
  author={Zhao, Chen and Ge, Yixiao and Zhu, Feng and Zhao, Rui and Li, Hongsheng and Salzmann, Mathieu},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision.},
  year={2021}
}

Setup

Please start by installing the required libraries:

pip install -r requirements.txt

Data Processing

The code of this part is partially borrowed from [OANet]. Please follow their instructions to download the training and testing data.

bash download_data.sh raw_data raw_data_yfcc.tar.gz 0 8 ## YFCC100M
tar -xvf raw_data_yfcc.tar.gz

bash download_data.sh raw_sun3d_test raw_sun3d_test.tar.gz 0 2 ## SUN3D
tar -xvf raw_sun3d_test.tar.gz
bash download_data.sh raw_sun3d_train raw_sun3d_train.tar.gz 0 63
tar -xvf raw_sun3d_train.tar.gz

After downloading the datasets, the initial matches can be generated by:

cd dump_match
bash yfcc.sh
bash sun3d.sh

The initial matches are generated over SIFT by default. The ones based on ORB and SuperPoint are also available by changing the settings of --suffix and --desc_name.

Pretrained Model

We provide a pretrained model on YFCC100M. The results in our paper can be reproduced by running the test script:

python ./test.py --use_ransac True --data_te ./data_dump/yfcc-sift-2000-test.hdf5 --output_dir ./logs/CLNet_yfcc_sift --model_path ./pretrained_models/clnet_yfcc_sift.pth

Train model on YFCC100M

Please run the training script to train our model on YFCC100M after the data processing is done.

python ./train.py --data_tr ./data_dump/yfcc-sift-2000-train.hdf5
--data_te ./data_dump/yfcc-sift-2000-test.hdf5
You might also like...
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

[ICCV 2021]  Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

[ICCV 2021]  Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Deep Relational Metric Learning This repository is the official PyTorch implementation of Deep Relational Metric Learning. Framework Datasets CUB-200-

A Pytorch implementation of
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Comments
  • No module named 'dataset'

    No module named 'dataset'

    Hello! Thanks for sharing the code. Where is this 'dataset' package? https://github.com/sailor-z/CLNet/blob/2dc7a6900b8fec6e9e584feeca233d7c1e2f7a3b/dump_match/yfcc.py#L2

    opened by weitong8591 2
  •  I get a error when run the “yfcc.sh”

    I get a error when run the “yfcc.sh”

    FileNotFoundError: [Errno 2] Unable to open file (unable to open file: name = '../raw_data/yfcc100m//buckingham_palace/test/images/39197892_9580433466.jpg.sift-2000.hdf5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    and I get the follow error when run the sun3d.sh : FileNotFoundError: [Errno 2] Unable to open file (unable to open file: name = '../raw_data/sun3d_test//te-brown1//test/images/0000631-000021117908.jpg.sift-2000.hdf5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    opened by wwcisme 0
Owner
Chen Zhao
https://sailor-z.github.io/
Chen Zhao
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

?? ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 8, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 1, 2023
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings and that the spatial embeddings make minor contributions, increasing the need for high-quality content embeddings and thus increasing the training difficulty.

null 281 Dec 30, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022