Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

Related tags

Deep Learning BRIMs
Overview

BRIMs

Bidirectional Recurrent Independent Mechanisms

Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules

@article{mittal2020learning,
  title={Learning to combine top-down and bottom-up signals in recurrent neural networks with attention over modules},
  author={Mittal, Sarthak and Lamb, Alex and Goyal, Anirudh and Voleti, Vikram and Shanahan, Murray and Lajoie, Guillaume and Mozer, Michael and Bengio, Yoshua},
  journal={arXiv preprint arXiv:2006.16981},
  year={2020}
}

MNIST Experiments

To run MNIST Experiments, please use the following command

python train_mnist.py --emsize 300 --nlayers 2 --cuda --cudnn --algo blocks --num_blocks 6 3 --topk 4 2 --nhid 300 300 --use_inactive

CIFAR10 Experiments

To run CIFAR10 Experiments, please use the following command

python train_cifar.py --emsize 300 --nlayers 2 --cuda --cudnn --algo blocks --num_blocks 6 6 --topk 4 4 --nhid 300 300 --use_inactive

You might also like...
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

Pytorch implementation of
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Implementation of
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Comments
  • Reinforcement Learning implementation

    Reinforcement Learning implementation

    Dear Sarthmit thanks for your good code , i have 2 request may I ask you to add RL experiment in repository ? and have you ever test RIM or BRIM in meta (Reinforcement) learning setup when we exposure with distribution of task ? already excuse for my poor English skill :))

    opened by RoozbehRazavi 1
  • Speed difference between two algorithm 'blocks' and 'lstm'

    Speed difference between two algorithm 'blocks' and 'lstm'

    Hello, thanks for the good code. I find that while running CIFAR10 Experiments, there is about 40x speed difference between 'blocks' and 'lstm'. Is it normal?

    opened by toco2270853 1
Owner
Sarthak Mittal
Graduate Student Department of Mathematics Universite de Montreal / MILA
Sarthak Mittal
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

null 124 Jan 6, 2023
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

?? Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 5, 2023
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 9, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022