Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Related tags

Deep Learning GNTM
Overview

Graph Neural Topic Model (GNTM)

This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Requirements

  • Python >= 3.6
  • Pytorch == 1.6.0
  • torch-geometric == 1.7.0
  • torch-scatter == 2.0.6
  • torch-sparse == 0.6.9

Dataset

The links of the datasets can be found in the following:

The Glove word embeddings can be download from theis link.

The datasets and word embedings should be placed with the guide of the paths in the settings.py.

Usage

Before training GNTM, we first need to preprocess the data by the following scripts (need adjust some parameters based on the description in our paper for different datasets.):

cd dataPrepare
python preprocess.py
python graph_data.py

Example script to train GNTM:

python main.py \
--device cuda:0 \
--dataset News20 \
--model GDGNNMODEL \
--num_topic 20 \
--num_epoch 400 \
--ni 300  \
--word \
--taskid 0 \
--nwindow  3

Here,

  • --dataset specifies the dataset name, currently it supports News20, TMN, BNC and Reuters for 20 News Group, Tag My News, British National Corpus and Reuters, respectively.
  • --device represents computation device, such as cpu or cuda:0.
  • --model represents the used model, GDGNNMODEL is corresponding to GNTM
  • --num_topic represents the number of topics.
  • --num_epoch represents the maximized number of training epochs.
  • --ni represents the dimension of word embeddings.
  • --taskid is corresponding to the random seed.
  • --nwindow represents the window size to construct dpcument graphs.

Reference

If you find our methods or code helpful, please kindly cite the paper:

@inproceedings{shen2021topic,
  title={Topic Modeling Revisited: A Document Graph-based Neural Network Perspective},
  author={Shen, Dazhong and Qin, Chuan and Wang, Chao and Dong, Zheng and Zhu, Hengshu and Xiong, Hui},
  booktitle={Proceedings of Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS-2021)},
  year={2021}
}
You might also like...
Official implementation of our CVPR2021 paper
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

This is the official PyTorch implementation of the paper
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

[PyTorch] Official implementation of CVPR2021 paper
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Official Pytorch Implementation of:
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma.
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Owner
Dazhong Shen
Dazhong Shen
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 6, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 3, 2023
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

null 49 Nov 23, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 9, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

null 212 Dec 25, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

null 364 Dec 14, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 4, 2023
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

null 35 Dec 6, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

null 50 Oct 19, 2022