I found that the training ACC(AUC) decreased to 0.5 after about 130 epochs. Here is the training log:
I1112 15:45:48.273541 140547172456256 log.py:30] Command line executed: python main.py --dataset celegans_tri --hidden_features 100 --prop_depth 2 --epoch 300 --feature sp --max_sp 5 --test_ratio 0.1 --seed 9 --metric acc
I1112 15:45:48.273656 140547172456256 log.py:31] Full args parsed:
I1112 15:45:48.273727 140547172456256 log.py:32] Namespace(N=1000, T=6, bs=64, data_usage=1.0, dataset='celegans_tri', debug=False, directed=False, dropout=0, epoch=300, feature='sp', gpu=0, hidden_features=100, k=3, l2=0, layers=2, log_dir='./log/', lr=0.0001, max_sp=5, metric='acc', model='DE-GNN', n=None, optimizer='sgd', parallel=False, prop_depth=2, rw_depth=3, seed=9, summary_file='result_summary.log', test_ratio=0.1, use_attributes=False, use_degree=True)
I1112 15:45:48.281443 140547172456256 utils.py:133] Read in celegans_tri for triplet_prediction -- number of nodes: 297, number of edges: 2148, number of labels: 0. Directed: False
I1112 15:45:48.288998 140547172456256 utils.py:174] Labels unavailable. Generating training/test instances from dataset ...
I1112 15:45:48.333193 140547172456256 utils.py:185] Generate 6482 train+val+test instances in total. data_usage: 1.0.
I1112 15:45:48.333460 140547172456256 utils.py:215] Encode positions ... (Parallel: False)
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6482/6482 [01:07<00:00, 95.33it/s]
I1112 15:46:56.363863 140547172456256 utils.py:168] Train size :5186, val size: 648, test size: 648, val ratio: 0.1, test ratio: 0.1
I1112 15:46:56.366519 140547172456256 utils.py:54] Data roughly takes 0.5350 GB in total
I1112 15:46:56.369619 140547172456256 utils.py:303] Model: DE-GNN, #layers: ModuleList(
(0): TAGConv(8, 100, K=2)
(1): TAGConv(100, 100, K=2)
), in_features: 8, hidden_features: 100, out_features: 2
I1112 15:47:02.813145 140547172456256 train.py:23] epoch 0 best test acc: 0.7531, train loss: 0.6286; train acc: 0.7590 val acc: 0.7562 test acc: 0.7531
I1112 15:47:05.933901 140547172456256 train.py:23] epoch 1 best test acc: 0.8040, train loss: 0.4676; train acc: 0.8029 val acc: 0.7994 test acc: 0.8040
I1112 15:47:08.614912 140547172456256 train.py:23] epoch 2 best test acc: 0.8349, train loss: 0.3969; train acc: 0.8293 val acc: 0.8287 test acc: 0.8349
I1112 15:47:11.734178 140547172456256 train.py:23] epoch 3 best test acc: 0.8410, train loss: 0.3570; train acc: 0.8467 val acc: 0.8395 test acc: 0.8410
I1112 15:47:14.493129 140547172456256 train.py:23] epoch 4 best test acc: 0.8410, train loss: 0.3425; train acc: 0.8525 val acc: 0.8318 test acc: 0.8503
I1112 15:47:17.240050 140547172456256 train.py:23] epoch 5 best test acc: 0.8781, train loss: 0.2940; train acc: 0.8787 val acc: 0.8719 test acc: 0.8781
I1112 15:47:19.997766 140547172456256 train.py:23] epoch 6 best test acc: 0.8966, train loss: 0.2519; train acc: 0.8986 val acc: 0.8889 test acc: 0.8966
I1112 15:47:22.747688 140547172456256 train.py:23] epoch 7 best test acc: 0.8966, train loss: 0.2557; train acc: 0.8988 val acc: 0.9012 test acc: 0.8966
I1112 15:47:25.635686 140547172456256 train.py:23] epoch 8 best test acc: 0.9074, train loss: 0.2466; train acc: 0.9038 val acc: 0.9028 test acc: 0.9074
I1112 15:47:28.382224 140547172456256 train.py:23] epoch 9 best test acc: 0.9074, train loss: 0.3302; train acc: 0.8685 val acc: 0.8719 test acc: 0.8765
I1112 15:47:31.256748 140547172456256 train.py:23] epoch 10 best test acc: 0.9074, train loss: 0.2827; train acc: 0.8781 val acc: 0.8580 test acc: 0.8873
I1112 15:47:34.004014 140547172456256 train.py:23] epoch 11 best test acc: 0.9074, train loss: 0.3233; train acc: 0.8569 val acc: 0.8333 test acc: 0.8472
I1112 15:47:36.780871 140547172456256 train.py:23] epoch 12 best test acc: 0.9074, train loss: 0.2504; train acc: 0.9047 val acc: 0.8997 test acc: 0.9028
I1112 15:47:39.623228 140547172456256 train.py:23] epoch 13 best test acc: 0.9074, train loss: 0.2544; train acc: 0.9022 val acc: 0.9043 test acc: 0.9074
I1112 15:47:42.357761 140547172456256 train.py:23] epoch 14 best test acc: 0.9074, train loss: 0.2534; train acc: 0.9059 val acc: 0.8966 test acc: 0.9012
I1112 15:47:45.109289 140547172456256 train.py:23] epoch 15 best test acc: 0.9074, train loss: 0.3000; train acc: 0.8833 val acc: 0.8688 test acc: 0.8765
I1112 15:47:47.861573 140547172456256 train.py:23] epoch 16 best test acc: 0.9074, train loss: 0.3083; train acc: 0.8727 val acc: 0.8580 test acc: 0.8719
I1112 15:47:50.728797 140547172456256 train.py:23] epoch 17 best test acc: 0.9043, train loss: 0.2336; train acc: 0.9069 val acc: 0.9074 test acc: 0.9043
I1112 15:47:53.489672 140547172456256 train.py:23] epoch 18 best test acc: 0.9043, train loss: 0.3282; train acc: 0.8623 val acc: 0.8688 test acc: 0.8765
I1112 15:47:56.245700 140547172456256 train.py:23] epoch 19 best test acc: 0.9043, train loss: 0.2355; train acc: 0.9115 val acc: 0.8997 test acc: 0.9105
I1112 15:47:59.115453 140547172456256 train.py:23] epoch 20 best test acc: 0.9043, train loss: 0.2692; train acc: 0.8920 val acc: 0.8750 test acc: 0.8827
I1112 15:48:01.906831 140547172456256 train.py:23] epoch 21 best test acc: 0.9043, train loss: 0.2548; train acc: 0.9005 val acc: 0.9028 test acc: 0.8981
I1112 15:48:04.673026 140547172456256 train.py:23] epoch 22 best test acc: 0.9043, train loss: 0.2342; train acc: 0.9140 val acc: 0.9074 test acc: 0.9059
I1112 15:48:07.449151 140547172456256 train.py:23] epoch 23 best test acc: 0.9043, train loss: 0.2673; train acc: 0.8818 val acc: 0.8657 test acc: 0.8765
I1112 15:48:10.274573 140547172456256 train.py:23] epoch 24 best test acc: 0.9090, train loss: 0.2431; train acc: 0.9123 val acc: 0.9136 test acc: 0.9090
I1112 15:48:13.033553 140547172456256 train.py:23] epoch 25 best test acc: 0.9090, train loss: 0.2288; train acc: 0.9134 val acc: 0.9090 test acc: 0.9120
I1112 15:48:15.804655 140547172456256 train.py:23] epoch 26 best test acc: 0.9090, train loss: 0.2832; train acc: 0.9078 val acc: 0.8997 test acc: 0.8904
I1112 15:48:18.670313 140547172456256 train.py:23] epoch 27 best test acc: 0.9090, train loss: 0.2467; train acc: 0.9140 val acc: 0.9059 test acc: 0.9105
I1112 15:48:21.435182 140547172456256 train.py:23] epoch 28 best test acc: 0.9090, train loss: 0.2343; train acc: 0.9115 val acc: 0.9028 test acc: 0.8997
I1112 15:48:24.195807 140547172456256 train.py:23] epoch 29 best test acc: 0.9090, train loss: 0.2449; train acc: 0.9115 val acc: 0.9028 test acc: 0.9028
I1112 15:48:27.022027 140547172456256 train.py:23] epoch 30 best test acc: 0.9090, train loss: 0.2383; train acc: 0.9150 val acc: 0.9074 test acc: 0.9120
I1112 15:48:29.836135 140547172456256 train.py:23] epoch 31 best test acc: 0.9090, train loss: 0.2647; train acc: 0.8972 val acc: 0.8873 test acc: 0.8858
I1112 15:48:32.587397 140547172456256 train.py:23] epoch 32 best test acc: 0.9090, train loss: 0.2325; train acc: 0.9086 val acc: 0.9043 test acc: 0.9012
I1112 15:48:35.345056 140547172456256 train.py:23] epoch 33 best test acc: 0.9090, train loss: 0.2265; train acc: 0.9123 val acc: 0.9105 test acc: 0.9059
I1112 15:48:38.106500 140547172456256 train.py:23] epoch 34 best test acc: 0.9090, train loss: 0.2474; train acc: 0.9051 val acc: 0.9043 test acc: 0.8920
I1112 15:48:40.861380 140547172456256 train.py:23] epoch 35 best test acc: 0.9090, train loss: 0.2525; train acc: 0.9117 val acc: 0.9105 test acc: 0.9059
I1112 15:48:43.710895 140547172456256 train.py:23] epoch 36 best test acc: 0.9090, train loss: 0.2516; train acc: 0.8966 val acc: 0.8827 test acc: 0.8750
I1112 15:48:46.486055 140547172456256 train.py:23] epoch 37 best test acc: 0.9090, train loss: 0.2544; train acc: 0.8941 val acc: 0.9028 test acc: 0.8951
I1112 15:48:49.241073 140547172456256 train.py:23] epoch 38 best test acc: 0.9090, train loss: 0.2523; train acc: 0.9053 val acc: 0.8951 test acc: 0.8873
I1112 15:48:52.007320 140547172456256 train.py:23] epoch 39 best test acc: 0.9090, train loss: 0.2478; train acc: 0.9042 val acc: 0.9120 test acc: 0.9012
I1112 15:48:55.012379 140547172456256 train.py:23] epoch 40 best test acc: 0.9090, train loss: 0.2328; train acc: 0.9103 val acc: 0.9059 test acc: 0.9105
I1112 15:48:57.910970 140547172456256 train.py:23] epoch 41 best test acc: 0.9090, train loss: 0.2331; train acc: 0.9073 val acc: 0.9090 test acc: 0.9074
I1112 15:49:00.912952 140547172456256 train.py:23] epoch 42 best test acc: 0.9090, train loss: 0.2701; train acc: 0.8909 val acc: 0.8951 test acc: 0.8935
I1112 15:49:03.783324 140547172456256 train.py:23] epoch 43 best test acc: 0.9090, train loss: 0.2506; train acc: 0.9049 val acc: 0.8966 test acc: 0.8889
I1112 15:49:06.666281 140547172456256 train.py:23] epoch 44 best test acc: 0.9090, train loss: 0.2209; train acc: 0.9138 val acc: 0.9120 test acc: 0.9182
I1112 15:49:09.528115 140547172456256 train.py:23] epoch 45 best test acc: 0.9090, train loss: 0.2495; train acc: 0.9046 val acc: 0.9059 test acc: 0.9028
I1112 15:49:12.371705 140547172456256 train.py:23] epoch 46 best test acc: 0.9090, train loss: 0.2423; train acc: 0.9094 val acc: 0.9059 test acc: 0.9090
I1112 15:49:15.126239 140547172456256 train.py:23] epoch 47 best test acc: 0.9105, train loss: 0.2240; train acc: 0.9128 val acc: 0.9182 test acc: 0.9105
I1112 15:49:17.901936 140547172456256 train.py:23] epoch 48 best test acc: 0.9120, train loss: 0.2197; train acc: 0.9117 val acc: 0.9198 test acc: 0.9120
I1112 15:49:20.665055 140547172456256 train.py:23] epoch 49 best test acc: 0.9120, train loss: 0.2495; train acc: 0.9032 val acc: 0.8920 test acc: 0.8951
I1112 15:49:23.544250 140547172456256 train.py:23] epoch 50 best test acc: 0.9120, train loss: 0.2544; train acc: 0.9049 val acc: 0.9074 test acc: 0.9043
I1112 15:49:26.305577 140547172456256 train.py:23] epoch 51 best test acc: 0.9120, train loss: 0.2496; train acc: 0.9069 val acc: 0.8951 test acc: 0.8951
I1112 15:49:29.075433 140547172456256 train.py:23] epoch 52 best test acc: 0.9120, train loss: 0.2342; train acc: 0.9090 val acc: 0.9151 test acc: 0.8997
I1112 15:49:31.839549 140547172456256 train.py:23] epoch 53 best test acc: 0.9120, train loss: 0.2273; train acc: 0.9117 val acc: 0.9059 test acc: 0.9028
I1112 15:49:34.621096 140547172456256 train.py:23] epoch 54 best test acc: 0.9120, train loss: 0.2263; train acc: 0.9128 val acc: 0.9182 test acc: 0.9028
I1112 15:49:37.398613 140547172456256 train.py:23] epoch 55 best test acc: 0.9120, train loss: 0.2180; train acc: 0.9126 val acc: 0.9167 test acc: 0.9090
I1112 15:49:40.205296 140547172456256 train.py:23] epoch 56 best test acc: 0.9120, train loss: 0.2468; train acc: 0.9103 val acc: 0.8981 test acc: 0.9074
I1112 15:49:42.973476 140547172456256 train.py:23] epoch 57 best test acc: 0.9120, train loss: 0.2296; train acc: 0.9155 val acc: 0.9198 test acc: 0.9136
I1112 15:49:45.762340 140547172456256 train.py:23] epoch 58 best test acc: 0.9120, train loss: 0.2316; train acc: 0.9125 val acc: 0.9074 test acc: 0.9198
I1112 15:49:48.522893 140547172456256 train.py:23] epoch 59 best test acc: 0.9120, train loss: 0.2238; train acc: 0.9144 val acc: 0.9167 test acc: 0.9228
I1112 15:49:51.282130 140547172456256 train.py:23] epoch 60 best test acc: 0.9120, train loss: 0.2246; train acc: 0.9103 val acc: 0.9136 test acc: 0.9074
I1112 15:49:54.043246 140547172456256 train.py:23] epoch 61 best test acc: 0.9120, train loss: 0.2403; train acc: 0.9142 val acc: 0.9120 test acc: 0.9105
I1112 15:49:56.805625 140547172456256 train.py:23] epoch 62 best test acc: 0.9120, train loss: 0.2310; train acc: 0.9119 val acc: 0.9090 test acc: 0.9059
I1112 15:49:59.563143 140547172456256 train.py:23] epoch 63 best test acc: 0.9120, train loss: 0.2195; train acc: 0.9153 val acc: 0.9120 test acc: 0.9074
I1112 15:50:02.321684 140547172456256 train.py:23] epoch 64 best test acc: 0.9120, train loss: 0.2387; train acc: 0.9125 val acc: 0.9012 test acc: 0.9028
I1112 15:50:05.080119 140547172456256 train.py:23] epoch 65 best test acc: 0.9120, train loss: 0.2434; train acc: 0.9140 val acc: 0.9090 test acc: 0.8997
I1112 15:50:07.853172 140547172456256 train.py:23] epoch 66 best test acc: 0.9120, train loss: 0.2564; train acc: 0.8704 val acc: 0.8472 test acc: 0.8611
I1112 15:50:10.613468 140547172456256 train.py:23] epoch 67 best test acc: 0.9120, train loss: 0.2290; train acc: 0.9180 val acc: 0.9105 test acc: 0.9090
I1112 15:50:13.371000 140547172456256 train.py:23] epoch 68 best test acc: 0.9120, train loss: 0.2249; train acc: 0.9157 val acc: 0.9090 test acc: 0.9105
I1112 15:50:16.165453 140547172456256 train.py:23] epoch 69 best test acc: 0.9120, train loss: 0.2418; train acc: 0.9107 val acc: 0.9012 test acc: 0.9059
I1112 15:50:18.991580 140547172456256 train.py:23] epoch 70 best test acc: 0.9120, train loss: 0.2323; train acc: 0.9179 val acc: 0.9090 test acc: 0.9120
I1112 15:50:21.766418 140547172456256 train.py:23] epoch 71 best test acc: 0.9120, train loss: 0.2373; train acc: 0.9113 val acc: 0.9059 test acc: 0.9090
I1112 15:50:24.521621 140547172456256 train.py:23] epoch 72 best test acc: 0.9120, train loss: 0.2628; train acc: 0.9080 val acc: 0.9120 test acc: 0.9059
I1112 15:50:27.277817 140547172456256 train.py:23] epoch 73 best test acc: 0.9120, train loss: 0.2662; train acc: 0.8961 val acc: 0.9012 test acc: 0.8951
I1112 15:50:30.039493 140547172456256 train.py:23] epoch 74 best test acc: 0.9120, train loss: 0.2206; train acc: 0.9150 val acc: 0.9105 test acc: 0.9120
I1112 15:50:32.801931 140547172456256 train.py:23] epoch 75 best test acc: 0.9120, train loss: 0.2598; train acc: 0.8993 val acc: 0.8827 test acc: 0.8750
I1112 15:50:35.562673 140547172456256 train.py:23] epoch 76 best test acc: 0.9120, train loss: 0.2457; train acc: 0.9036 val acc: 0.8812 test acc: 0.8997
I1112 15:50:38.315630 140547172456256 train.py:23] epoch 77 best test acc: 0.9120, train loss: 0.2627; train acc: 0.8993 val acc: 0.8735 test acc: 0.8981
I1112 15:50:41.091242 140547172456256 train.py:23] epoch 78 best test acc: 0.9120, train loss: 0.2617; train acc: 0.8878 val acc: 0.8657 test acc: 0.8750
I1112 15:50:43.896227 140547172456256 train.py:23] epoch 79 best test acc: 0.9120, train loss: 0.2502; train acc: 0.8947 val acc: 0.8688 test acc: 0.8843
I1112 15:50:46.688500 140547172456256 train.py:23] epoch 80 best test acc: 0.9120, train loss: 0.2173; train acc: 0.9165 val acc: 0.9059 test acc: 0.9182
I1112 15:50:49.467313 140547172456256 train.py:23] epoch 81 best test acc: 0.9120, train loss: 0.2392; train acc: 0.9053 val acc: 0.9028 test acc: 0.9043
I1112 15:50:52.229305 140547172456256 train.py:23] epoch 82 best test acc: 0.9120, train loss: 0.2500; train acc: 0.9071 val acc: 0.8843 test acc: 0.8966
I1112 15:50:55.001576 140547172456256 train.py:23] epoch 83 best test acc: 0.9120, train loss: 0.2790; train acc: 0.8966 val acc: 0.9012 test acc: 0.8904
I1112 15:50:57.769585 140547172456256 train.py:23] epoch 84 best test acc: 0.9120, train loss: 0.3611; train acc: 0.8677 val acc: 0.8812 test acc: 0.8750
I1112 15:51:00.533642 140547172456256 train.py:23] epoch 85 best test acc: 0.9120, train loss: 0.4286; train acc: 0.8228 val acc: 0.7886 test acc: 0.8040
I1112 15:51:03.291250 140547172456256 train.py:23] epoch 86 best test acc: 0.9120, train loss: 0.3781; train acc: 0.8000 val acc: 0.7932 test acc: 0.8009
I1112 15:51:06.045162 140547172456256 train.py:23] epoch 87 best test acc: 0.9120, train loss: 0.3915; train acc: 0.8268 val acc: 0.8410 test acc: 0.8225
I1112 15:51:08.795995 140547172456256 train.py:23] epoch 88 best test acc: 0.9120, train loss: 0.3270; train acc: 0.8999 val acc: 0.9043 test acc: 0.8951
I1112 15:51:11.571081 140547172456256 train.py:23] epoch 89 best test acc: 0.9120, train loss: 0.4492; train acc: 0.6635 val acc: 0.6867 test acc: 0.6651
I1112 15:51:14.359972 140547172456256 train.py:23] epoch 90 best test acc: 0.9120, train loss: 0.3873; train acc: 0.6847 val acc: 0.7083 test acc: 0.6944
I1112 15:51:17.164670 140547172456256 train.py:23] epoch 91 best test acc: 0.9120, train loss: 0.4855; train acc: 0.8722 val acc: 0.8812 test acc: 0.8673
I1112 15:51:19.943781 140547172456256 train.py:23] epoch 92 best test acc: 0.9120, train loss: 0.4262; train acc: 0.8041 val acc: 0.8071 test acc: 0.8117
I1112 15:51:22.699699 140547172456256 train.py:23] epoch 93 best test acc: 0.9120, train loss: 0.4460; train acc: 0.7451 val acc: 0.7515 test acc: 0.7577
I1112 15:51:25.458915 140547172456256 train.py:23] epoch 94 best test acc: 0.9120, train loss: 0.4742; train acc: 0.8309 val acc: 0.8395 test acc: 0.8302
I1112 15:51:28.222321 140547172456256 train.py:23] epoch 95 best test acc: 0.9120, train loss: 0.4984; train acc: 0.8669 val acc: 0.8735 test acc: 0.8565
I1112 15:51:30.984814 140547172456256 train.py:23] epoch 96 best test acc: 0.9120, train loss: 0.4360; train acc: 0.8076 val acc: 0.8117 test acc: 0.8117
I1112 15:51:33.746705 140547172456256 train.py:23] epoch 97 best test acc: 0.9120, train loss: 0.4042; train acc: 0.8359 val acc: 0.8441 test acc: 0.8333
I1112 15:51:36.503728 140547172456256 train.py:23] epoch 98 best test acc: 0.9120, train loss: 0.3924; train acc: 0.8633 val acc: 0.8719 test acc: 0.8519
I1112 15:51:39.297686 140547172456256 train.py:23] epoch 99 best test acc: 0.9120, train loss: 0.4202; train acc: 0.8887 val acc: 0.8858 test acc: 0.8796
I1112 15:51:42.056721 140547172456256 train.py:23] epoch 100 best test acc: 0.9120, train loss: 0.4648; train acc: 0.8855 val acc: 0.8858 test acc: 0.8781
I1112 15:51:44.873314 140547172456256 train.py:23] epoch 101 best test acc: 0.9120, train loss: 0.5454; train acc: 0.8297 val acc: 0.8380 test acc: 0.8287
I1112 15:51:47.643314 140547172456256 train.py:23] epoch 102 best test acc: 0.9120, train loss: 0.7081; train acc: 0.7628 val acc: 0.7577 test acc: 0.7639
I1112 15:51:50.416873 140547172456256 train.py:23] epoch 103 best test acc: 0.9120, train loss: 0.5950; train acc: 0.8089 val acc: 0.8148 test acc: 0.8225
I1112 15:51:53.174419 140547172456256 train.py:23] epoch 104 best test acc: 0.9120, train loss: 0.5965; train acc: 0.8880 val acc: 0.8966 test acc: 0.8858
I1112 15:51:55.937005 140547172456256 train.py:23] epoch 105 best test acc: 0.9120, train loss: 0.4456; train acc: 0.8085 val acc: 0.7994 test acc: 0.8102
I1112 15:51:58.697602 140547172456256 train.py:23] epoch 106 best test acc: 0.9120, train loss: 0.3856; train acc: 0.8845 val acc: 0.8920 test acc: 0.8827
I1112 15:52:01.455598 140547172456256 train.py:23] epoch 107 best test acc: 0.9120, train loss: 0.3945; train acc: 0.8758 val acc: 0.8827 test acc: 0.8781
I1112 15:52:04.220047 140547172456256 train.py:23] epoch 108 best test acc: 0.9120, train loss: 0.3926; train acc: 0.8270 val acc: 0.8380 test acc: 0.8349
I1112 15:52:06.988749 140547172456256 train.py:23] epoch 109 best test acc: 0.9120, train loss: 0.4028; train acc: 0.8342 val acc: 0.8472 test acc: 0.8380
I1112 15:52:09.750616 140547172456256 train.py:23] epoch 110 best test acc: 0.9120, train loss: 0.4056; train acc: 0.9078 val acc: 0.9105 test acc: 0.9074
I1112 15:52:12.517018 140547172456256 train.py:23] epoch 111 best test acc: 0.9120, train loss: 0.4972; train acc: 0.8299 val acc: 0.8441 test acc: 0.8302
I1112 15:52:15.279418 140547172456256 train.py:23] epoch 112 best test acc: 0.9120, train loss: 0.3514; train acc: 0.8857 val acc: 0.8997 test acc: 0.8765
I1112 15:52:18.042814 140547172456256 train.py:23] epoch 113 best test acc: 0.9120, train loss: 0.4088; train acc: 0.8276 val acc: 0.8472 test acc: 0.8272
I1112 15:52:20.812852 140547172456256 train.py:23] epoch 114 best test acc: 0.9120, train loss: 0.4402; train acc: 0.8137 val acc: 0.8225 test acc: 0.8179
I1112 15:52:23.571869 140547172456256 train.py:23] epoch 115 best test acc: 0.9120, train loss: 0.4475; train acc: 0.8504 val acc: 0.8673 test acc: 0.8441
I1112 15:52:26.362869 140547172456256 train.py:23] epoch 116 best test acc: 0.9120, train loss: 0.4440; train acc: 0.8623 val acc: 0.8827 test acc: 0.8549
I1112 15:52:29.118060 140547172456256 train.py:23] epoch 117 best test acc: 0.9120, train loss: 0.4379; train acc: 0.8479 val acc: 0.8642 test acc: 0.8410
I1112 15:52:31.930736 140547172456256 train.py:23] epoch 118 best test acc: 0.9120, train loss: 0.4685; train acc: 0.8533 val acc: 0.8704 test acc: 0.8457
I1112 15:52:34.699009 140547172456256 train.py:23] epoch 119 best test acc: 0.9120, train loss: 0.4813; train acc: 0.8384 val acc: 0.8519 test acc: 0.8349
I1112 15:52:37.471475 140547172456256 train.py:23] epoch 120 best test acc: 0.9120, train loss: 0.4721; train acc: 0.8652 val acc: 0.8843 test acc: 0.8549
I1112 15:52:40.228284 140547172456256 train.py:23] epoch 121 best test acc: 0.9120, train loss: 0.4526; train acc: 0.8284 val acc: 0.8441 test acc: 0.8302
I1112 15:52:42.983278 140547172456256 train.py:23] epoch 122 best test acc: 0.9120, train loss: 0.4467; train acc: 0.8101 val acc: 0.8225 test acc: 0.8133
I1112 15:52:45.744797 140547172456256 train.py:23] epoch 123 best test acc: 0.9120, train loss: 0.3519; train acc: 0.8833 val acc: 0.9012 test acc: 0.8781
I1112 15:52:48.502303 140547172456256 train.py:23] epoch 124 best test acc: 0.9120, train loss: 0.3391; train acc: 0.9038 val acc: 0.9074 test acc: 0.9090
I1112 15:52:51.259793 140547172456256 train.py:23] epoch 125 best test acc: 0.9120, train loss: 0.4266; train acc: 0.8473 val acc: 0.8627 test acc: 0.8519
I1112 15:52:54.020490 140547172456256 train.py:23] epoch 126 best test acc: 0.9120, train loss: 0.5247; train acc: 0.7054 val acc: 0.7207 test acc: 0.7145
I1112 15:52:56.777758 140547172456256 train.py:23] epoch 127 best test acc: 0.9120, train loss: 0.5110; train acc: 0.8903 val acc: 0.8935 test acc: 0.8889
I1112 15:52:59.549555 140547172456256 train.py:23] epoch 128 best test acc: 0.9120, train loss: 0.5320; train acc: 0.7023 val acc: 0.7145 test acc: 0.7176
I1112 15:53:02.402307 140547172456256 train.py:23] epoch 129 best test acc: 0.9120, train loss: 0.3754; train acc: 0.8666 val acc: 0.8735 test acc: 0.8642
I1112 15:53:05.158126 140547172456256 train.py:23] epoch 130 best test acc: 0.9120, train loss: 0.3422; train acc: 0.8963 val acc: 0.8997 test acc: 0.8920
I1112 15:53:07.911795 140547172456256 train.py:23] epoch 131 best test acc: 0.9120, train loss: 0.4212; train acc: 0.8072 val acc: 0.8102 test acc: 0.8040
I1112 15:53:10.724231 140547172456256 train.py:23] epoch 132 best test acc: 0.9120, train loss: 0.3984; train acc: 0.8577 val acc: 0.8642 test acc: 0.8519
I1112 15:53:13.498905 140547172456256 train.py:23] epoch 133 best test acc: 0.9120, train loss: 0.4417; train acc: 0.8303 val acc: 0.8380 test acc: 0.8210
I1112 15:53:16.274668 140547172456256 train.py:23] epoch 134 best test acc: 0.9120, train loss: 0.4622; train acc: 0.8463 val acc: 0.8503 test acc: 0.8395
I1112 15:53:19.035961 140547172456256 train.py:23] epoch 135 best test acc: 0.9120, train loss: 0.6824; train acc: 0.7061 val acc: 0.7191 test acc: 0.7130
I1112 15:53:21.796615 140547172456256 train.py:23] epoch 136 best test acc: 0.9120, train loss: 0.5042; train acc: 0.8590 val acc: 0.8735 test acc: 0.8580
I1112 15:53:24.554052 140547172456256 train.py:23] epoch 137 best test acc: 0.9120, train loss: 0.5136; train acc: 0.7686 val acc: 0.7793 test acc: 0.7731
I1112 15:53:27.308766 140547172456256 train.py:23] epoch 138 best test acc: 0.9120, train loss: 0.4965; train acc: 0.7486 val acc: 0.7546 test acc: 0.7562
I1112 15:53:30.071453 140547172456256 train.py:23] epoch 139 best test acc: 0.9120, train loss: 0.5029; train acc: 0.8502 val acc: 0.8611 test acc: 0.8472
I1112 15:53:32.831556 140547172456256 train.py:23] epoch 140 best test acc: 0.9120, train loss: 0.5234; train acc: 0.7144 val acc: 0.7269 test acc: 0.7191
I1112 15:53:35.598645 140547172456256 train.py:23] epoch 141 best test acc: 0.9120, train loss: 0.6212; train acc: 0.5008 val acc: 0.5000 test acc: 0.5031
I1112 15:53:38.356886 140547172456256 train.py:23] epoch 142 best test acc: 0.9120, train loss: 0.4760; train acc: 0.7916 val acc: 0.7824 test acc: 0.7793
I1112 15:53:41.115776 140547172456256 train.py:23] epoch 143 best test acc: 0.9120, train loss: 0.3932; train acc: 0.8565 val acc: 0.8704 test acc: 0.8565
I1112 15:53:43.875584 140547172456256 train.py:23] epoch 144 best test acc: 0.9120, train loss: 0.3257; train acc: 0.9040 val acc: 0.9059 test acc: 0.9012
I1112 15:53:46.641317 140547172456256 train.py:23] epoch 145 best test acc: 0.9120, train loss: 0.3381; train acc: 0.8718 val acc: 0.8488 test acc: 0.8627
I1112 15:53:49.406296 140547172456256 train.py:23] epoch 146 best test acc: 0.9120, train loss: 0.2581; train acc: 0.9098 val acc: 0.9074 test acc: 0.9059
I1112 15:53:52.158921 140547172456256 train.py:23] epoch 147 best test acc: 0.9120, train loss: 0.3683; train acc: 0.8695 val acc: 0.8534 test acc: 0.8673
I1112 15:53:54.943026 140547172456256 train.py:23] epoch 148 best test acc: 0.9120, train loss: 0.5825; train acc: 0.7065 val acc: 0.6759 test acc: 0.6759
I1112 15:53:57.714968 140547172456256 train.py:23] epoch 149 best test acc: 0.9120, train loss: 1.2555; train acc: 0.7894 val acc: 0.7809 test acc: 0.7639
I1112 15:54:00.496615 140547172456256 train.py:23] epoch 150 best test acc: 0.9120, train loss: 1.8263; train acc: 0.5685 val acc: 0.5725 test acc: 0.5694
I1112 15:54:03.249165 140547172456256 train.py:23] epoch 151 best test acc: 0.9120, train loss: 1.9034; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:54:05.935368 140547172456256 train.py:23] epoch 152 best test acc: 0.9120, train loss: 1.4316; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:54:08.611667 140547172456256 train.py:23] epoch 153 best test acc: 0.9120, train loss: 0.8392; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:54:11.285194 140547172456256 train.py:23] epoch 154 best test acc: 0.9120, train loss: 0.7200; train acc: 0.5418 val acc: 0.5586 test acc: 0.5586
I1112 15:54:13.955766 140547172456256 train.py:23] epoch 155 best test acc: 0.9120, train loss: 1.2044; train acc: 0.5538 val acc: 0.5741 test acc: 0.5694
I1112 15:54:16.633017 140547172456256 train.py:23] epoch 156 best test acc: 0.9120, train loss: 1.6809; train acc: 0.5632 val acc: 0.5802 test acc: 0.5818
I1112 15:54:19.312265 140547172456256 train.py:23] epoch 157 best test acc: 0.9120, train loss: 1.9080; train acc: 0.5783 val acc: 0.5972 test acc: 0.5972
I1112 15:54:21.984429 140547172456256 train.py:23] epoch 158 best test acc: 0.9120, train loss: 1.8633; train acc: 0.6012 val acc: 0.6235 test acc: 0.6096
I1112 15:54:24.677087 140547172456256 train.py:23] epoch 159 best test acc: 0.9120, train loss: 1.5951; train acc: 0.6302 val acc: 0.6481 test acc: 0.6451
I1112 15:54:27.356057 140547172456256 train.py:23] epoch 160 best test acc: 0.9120, train loss: 0.9398; train acc: 0.7329 val acc: 0.7423 test acc: 0.7407
I1112 15:54:30.087539 140547172456256 train.py:23] epoch 161 best test acc: 0.9120, train loss: 0.9065; train acc: 0.8320 val acc: 0.8410 test acc: 0.8179
I1112 15:54:32.832378 140547172456256 train.py:23] epoch 162 best test acc: 0.9120, train loss: 0.5656; train acc: 0.6832 val acc: 0.7160 test acc: 0.6898
I1112 15:54:35.577394 140547172456256 train.py:23] epoch 163 best test acc: 0.9120, train loss: 0.6688; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:54:38.350401 140547172456256 train.py:23] epoch 164 best test acc: 0.9120, train loss: 1.0032; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:54:41.099882 140547172456256 train.py:23] epoch 165 best test acc: 0.9120, train loss: 1.2977; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:54:43.900535 140547172456256 train.py:23] epoch 166 best test acc: 0.9120, train loss: 1.3740; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:54:46.642547 140547172456256 train.py:23] epoch 167 best test acc: 0.9120, train loss: 1.2039; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:54:49.415602 140547172456256 train.py:23] epoch 168 best test acc: 0.9120, train loss: 0.8786; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:54:52.157383 140547172456256 train.py:23] epoch 169 best test acc: 0.9120, train loss: 0.6898; train acc: 0.5048 val acc: 0.5093 test acc: 0.5093
I1112 15:54:54.901844 140547172456256 train.py:23] epoch 170 best test acc: 0.9120, train loss: 0.8942; train acc: 0.5027 val acc: 0.5046 test acc: 0.5046
I1112 15:54:57.643233 140547172456256 train.py:23] epoch 171 best test acc: 0.9120, train loss: 1.2203; train acc: 0.5017 val acc: 0.5015 test acc: 0.5031
I1112 15:55:00.388775 140547172456256 train.py:23] epoch 172 best test acc: 0.9120, train loss: 1.3849; train acc: 0.5004 val acc: 0.5000 test acc: 0.5015
I1112 15:55:03.135487 140547172456256 train.py:23] epoch 173 best test acc: 0.9120, train loss: 1.3054; train acc: 0.5002 val acc: 0.5000 test acc: 0.5000
I1112 15:55:05.882569 140547172456256 train.py:23] epoch 174 best test acc: 0.9120, train loss: 1.0149; train acc: 0.5002 val acc: 0.5000 test acc: 0.5000
I1112 15:55:08.628256 140547172456256 train.py:23] epoch 175 best test acc: 0.9120, train loss: 0.7225; train acc: 0.5002 val acc: 0.5000 test acc: 0.5000
I1112 15:55:11.371702 140547172456256 train.py:23] epoch 176 best test acc: 0.9120, train loss: 0.7835; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:14.116631 140547172456256 train.py:23] epoch 177 best test acc: 0.9120, train loss: 1.1120; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:16.863706 140547172456256 train.py:23] epoch 178 best test acc: 0.9120, train loss: 1.3536; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:19.616433 140547172456256 train.py:23] epoch 179 best test acc: 0.9120, train loss: 1.3649; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:22.364442 140547172456256 train.py:23] epoch 180 best test acc: 0.9120, train loss: 1.1435; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:25.111528 140547172456256 train.py:23] epoch 181 best test acc: 0.9120, train loss: 0.8121; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:27.872689 140547172456256 train.py:23] epoch 182 best test acc: 0.9120, train loss: 0.7075; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:30.643410 140547172456256 train.py:23] epoch 183 best test acc: 0.9120, train loss: 0.9747; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:33.425593 140547172456256 train.py:23] epoch 184 best test acc: 0.9120, train loss: 1.2807; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:36.189659 140547172456256 train.py:23] epoch 185 best test acc: 0.9120, train loss: 1.3892; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:38.962731 140547172456256 train.py:23] epoch 186 best test acc: 0.9120, train loss: 1.2462; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:41.708002 140547172456256 train.py:23] epoch 187 best test acc: 0.9120, train loss: 0.9284; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:44.456668 140547172456256 train.py:23] epoch 188 best test acc: 0.9120, train loss: 0.6960; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:47.199663 140547172456256 train.py:23] epoch 189 best test acc: 0.9120, train loss: 0.8551; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:49.941739 140547172456256 train.py:23] epoch 190 best test acc: 0.9120, train loss: 1.1849; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:52.687027 140547172456256 train.py:23] epoch 191 best test acc: 0.9120, train loss: 1.3712; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:55.427909 140547172456256 train.py:23] epoch 192 best test acc: 0.9120, train loss: 1.3212; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:55:58.167148 140547172456256 train.py:23] epoch 193 best test acc: 0.9120, train loss: 1.0556; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:00.910926 140547172456256 train.py:23] epoch 194 best test acc: 0.9120, train loss: 0.7471; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:03.657994 140547172456256 train.py:23] epoch 195 best test acc: 0.9120, train loss: 0.7490; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:06.405178 140547172456256 train.py:23] epoch 196 best test acc: 0.9120, train loss: 1.0542; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:09.156939 140547172456256 train.py:23] epoch 197 best test acc: 0.9120, train loss: 1.3151; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:11.899834 140547172456256 train.py:23] epoch 198 best test acc: 0.9120, train loss: 1.3564; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:14.644973 140547172456256 train.py:23] epoch 199 best test acc: 0.9120, train loss: 1.1590; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:17.432653 140547172456256 train.py:23] epoch 200 best test acc: 0.9120, train loss: 0.8364; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:20.299710 140547172456256 train.py:23] epoch 201 best test acc: 0.9120, train loss: 0.6981; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:23.126930 140547172456256 train.py:23] epoch 202 best test acc: 0.9120, train loss: 0.9328; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:26.017116 140547172456256 train.py:23] epoch 203 best test acc: 0.9120, train loss: 1.2437; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:28.749485 140547172456256 train.py:23] epoch 204 best test acc: 0.9120, train loss: 1.3754; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:31.446769 140547172456256 train.py:23] epoch 205 best test acc: 0.9120, train loss: 1.2595; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:34.132292 140547172456256 train.py:23] epoch 206 best test acc: 0.9120, train loss: 0.9565; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:36.801638 140547172456256 train.py:23] epoch 207 best test acc: 0.9120, train loss: 0.7029; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:39.476874 140547172456256 train.py:23] epoch 208 best test acc: 0.9120, train loss: 0.8232; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:42.150356 140547172456256 train.py:23] epoch 209 best test acc: 0.9120, train loss: 1.1527; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:44.818868 140547172456256 train.py:23] epoch 210 best test acc: 0.9120, train loss: 1.3633; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:47.487900 140547172456256 train.py:23] epoch 211 best test acc: 0.9120, train loss: 1.3360; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:50.159335 140547172456256 train.py:23] epoch 212 best test acc: 0.9120, train loss: 1.0868; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:52.829516 140547172456256 train.py:23] epoch 213 best test acc: 0.9120, train loss: 0.7682; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:55.501109 140547172456256 train.py:23] epoch 214 best test acc: 0.9120, train loss: 0.7315; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:56:58.174281 140547172456256 train.py:23] epoch 215 best test acc: 0.9120, train loss: 1.0313; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:00.858530 140547172456256 train.py:23] epoch 216 best test acc: 0.9120, train loss: 1.3165; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:03.530918 140547172456256 train.py:23] epoch 217 best test acc: 0.9120, train loss: 1.3862; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:06.207875 140547172456256 train.py:23] epoch 218 best test acc: 0.9120, train loss: 1.2168; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:08.881698 140547172456256 train.py:23] epoch 219 best test acc: 0.9120, train loss: 0.8883; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:11.594131 140547172456256 train.py:23] epoch 220 best test acc: 0.9120, train loss: 0.6932; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:14.266294 140547172456256 train.py:23] epoch 221 best test acc: 0.9120, train loss: 0.8966; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:16.996408 140547172456256 train.py:23] epoch 222 best test acc: 0.9120, train loss: 1.2231; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:19.664427 140547172456256 train.py:23] epoch 223 best test acc: 0.9120, train loss: 1.3816; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:22.364999 140547172456256 train.py:23] epoch 224 best test acc: 0.9120, train loss: 1.2949; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:25.076597 140547172456256 train.py:23] epoch 225 best test acc: 0.9120, train loss: 1.0061; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:27.747164 140547172456256 train.py:23] epoch 226 best test acc: 0.9120, train loss: 0.7199; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:30.421473 140547172456256 train.py:23] epoch 227 best test acc: 0.9120, train loss: 0.7876; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:33.090271 140547172456256 train.py:23] epoch 228 best test acc: 0.9120, train loss: 1.1145; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:35.759325 140547172456256 train.py:23] epoch 229 best test acc: 0.9120, train loss: 1.3484; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:38.431622 140547172456256 train.py:23] epoch 230 best test acc: 0.9120, train loss: 1.3503; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:41.103100 140547172456256 train.py:23] epoch 231 best test acc: 0.9120, train loss: 1.1246; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:43.775609 140547172456256 train.py:23] epoch 232 best test acc: 0.9120, train loss: 0.7992; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:46.447662 140547172456256 train.py:23] epoch 233 best test acc: 0.9120, train loss: 0.7121; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:49.121537 140547172456256 train.py:23] epoch 234 best test acc: 0.9120, train loss: 0.9825; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:51.791544 140547172456256 train.py:23] epoch 235 best test acc: 0.9120, train loss: 1.2777; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:54.468204 140547172456256 train.py:23] epoch 236 best test acc: 0.9120, train loss: 1.3703; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:57.138005 140547172456256 train.py:23] epoch 237 best test acc: 0.9120, train loss: 1.2233; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:57:59.811052 140547172456256 train.py:23] epoch 238 best test acc: 0.9120, train loss: 0.9051; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:02.484659 140547172456256 train.py:23] epoch 239 best test acc: 0.9120, train loss: 0.6939; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:05.193472 140547172456256 train.py:23] epoch 240 best test acc: 0.9120, train loss: 0.8703; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:07.863769 140547172456256 train.py:23] epoch 241 best test acc: 0.9120, train loss: 1.1968; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:10.712868 140547172456256 train.py:23] epoch 242 best test acc: 0.9120, train loss: 1.3778; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:13.670826 140547172456256 train.py:23] epoch 243 best test acc: 0.9120, train loss: 1.3188; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:16.668537 140547172456256 train.py:23] epoch 244 best test acc: 0.9120, train loss: 1.0441; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:19.627417 140547172456256 train.py:23] epoch 245 best test acc: 0.9120, train loss: 0.7401; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:22.545170 140547172456256 train.py:23] epoch 246 best test acc: 0.9120, train loss: 0.7561; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:25.495682 140547172456256 train.py:23] epoch 247 best test acc: 0.9120, train loss: 1.0728; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:28.443551 140547172456256 train.py:23] epoch 248 best test acc: 0.9120, train loss: 1.3343; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:31.364842 140547172456256 train.py:23] epoch 249 best test acc: 0.9120, train loss: 1.3768; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:34.285497 140547172456256 train.py:23] epoch 250 best test acc: 0.9120, train loss: 1.1775; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:37.198900 140547172456256 train.py:23] epoch 251 best test acc: 0.9120, train loss: 0.8465; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:40.116676 140547172456256 train.py:23] epoch 252 best test acc: 0.9120, train loss: 0.6972; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:43.053169 140547172456256 train.py:23] epoch 253 best test acc: 0.9120, train loss: 0.9337; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:45.972529 140547172456256 train.py:23] epoch 254 best test acc: 0.9120, train loss: 1.2513; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:48.898423 140547172456256 train.py:23] epoch 255 best test acc: 0.9120, train loss: 1.3876; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:51.823688 140547172456256 train.py:23] epoch 256 best test acc: 0.9120, train loss: 1.2832; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:54.742418 140547172456256 train.py:23] epoch 257 best test acc: 0.9120, train loss: 0.9793; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:58:57.695211 140547172456256 train.py:23] epoch 258 best test acc: 0.9120, train loss: 0.7080; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:59:00.619416 140547172456256 train.py:23] epoch 259 best test acc: 0.9120, train loss: 0.8129; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:59:03.585923 140547172456256 train.py:23] epoch 260 best test acc: 0.9120, train loss: 1.1467; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:59:06.531333 140547172456256 train.py:23] epoch 261 best test acc: 0.9120, train loss: 1.3683; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:59:09.460025 140547172456256 train.py:23] epoch 262 best test acc: 0.9120, train loss: 1.3521; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:59:12.378901 140547172456256 train.py:23] epoch 263 best test acc: 0.9120, train loss: 1.1071; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:59:15.332750 140547172456256 train.py:23] epoch 264 best test acc: 0.9120, train loss: 0.7811; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:59:18.248873 140547172456256 train.py:23] epoch 265 best test acc: 0.9120, train loss: 0.7227; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
I1112 15:59:21.171850 140547172456256 train.py:23] epoch 266 best test acc: 0.9120, train loss: 1.0098; train acc: 0.5000 val acc: 0.5000 test acc: 0.5000
And I don't know why it decreases to 0.5...
Further, I saw that the FeedForwardNetwork uses an nn.LogSoftmax(dim=-1) in self.layer2. While the loss function torch.cross_entropy() expects raw, unnormalized scores.
Is the nn.LogSoftmax(dim=-1) in self.layer2 in FeedForwardNetwork unnecessary?