Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Overview

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble

DOI License: MIT

This is the code for reproducing the results of the paper Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble accepted at NeurIPS'2021.

This code builds up from the offical code of Reset-Free Lifelong Learning with Skill-Space Planning, originally derived from rlkit.

If you find this repository useful for your research, please cite:

@inproceedings{
    an2021edac,
    title={Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble},
    author={Gaon An and Seungyong Moon and Jang-Hyun Kim and Hyun Oh Song},
    booktitle={Neural Information Processing Systems},
    year={2021}
}

Requirements

To install all the required dependencies:

  1. Install MuJoCo engine, which can be downloaded from here.

  2. Install Python packages listed in requirements.txt using pip. You should specify the versions of mujoco_py and dm_control in requirements.txt depending on the version of MuJoCo engine you have installed as follows:

    • MuJoCo 2.0: mujoco-py<2.1,>=2.0, dm_control==0.0.364896371
    • MuJoCo 2.1.0: mujoco-py<2.2,>=2.1, dm_control==0.0.403778684
    • MuJoCo 2.1.1: to be updated
  3. Manually download and install d4rl package from here. You should remove lines including dm_control in setup.py.

Here is an example of how to install all the dependencies on Ubuntu:

conda create -n edac python=3.7
conda activate edac
# Specify versions of mujoco-py and dm_control in requirements.txt
pip install --no-cache-dir -r requirements.txt

cd .
git clone https://github.com/rail-berkeley/d4rl.git

cd d4rl
# Remove lines including 'dm_control' in setup.py
pip install -e .

Reproducing the results

Gym

To reproduce SAC-N results for MuJoCo Gym, run:

python -m scripts.sac --env_name [ENVIRONMENT] --num_qs [N]

To reproduce EDAC results for MuJoCo Gym, run:

python -m scripts.sac --env_name [ENVIRONMENT] --num_qs [N] --eta [ETA]

Adroit

On Adroit tasks, we apply reward normalization for further training stability. For example, to reproduce the EDAC results for pen-human, run:

python -m scripts.sac --env_name pen-human-v1 --epoch 200 --num_qs 20 --plr 3e-5 --eta 1000 --reward_mean --reward_std

To reproduce the EDAC results for pen-cloned, run:

python -m scripts.sac --env_name pen-human-v1 --epoch 200 --num_qs 20 --plr 3e-5 --eta 10 --max_q_backup --reward_mean --reward_std

Acknowledgement

This work was supported in part by Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00882, (SW STAR LAB) Development of deployable learning intelligence via self-sustainable and trustworthy machine learning and No. 2019-0-01371, Development of brain-inspired AI with human-like intelligence), and Research Resettlement Fund for the new faculty of Seoul National University. This material is based upon work supported by the Air Force Office of Scientific Research under award number FA2386-20-1-4043.

You might also like...
Official PyTorch implementation of Spatial Dependency Networks.
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Official implementation of our CVPR2021 paper
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

This is the official PyTorch implementation of the paper
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

StyleGAN2-ADA - Official PyTorch implementation
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Official PyTorch implementation of
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

Official PyTorch implementation of RobustNet (CVPR 2021 Oral)
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

[PyTorch] Official implementation of CVPR2021 paper
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Comments
  • Performance on D4RL AntMaze tasks?

    Performance on D4RL AntMaze tasks?

    Hello, I have a question about the performance of SAC-N or EDAC on AntMaze tasks. Have you ever tested it?

    In my experiments based on this official implementation, I found that average returns in evaluation are always 0, which is worse than behavior cloning. Then I try to run with a modified reward (r=4*(r-0.5)) and max Q backup. However, they didn't help.

    I'll appreciate it a lot if you give me some related advices. Thanks a lot.

    opened by yuxudong20 3
Releases(v1.0)
Owner
null
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 6, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

null 49 Nov 23, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes.

NVIDIA Research Projects 3.2k Dec 30, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 6, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

null 364 Dec 14, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

null 35 Dec 6, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022