Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Overview

Lightning ASR

Modular and extensible speech recognition library leveraging pytorch-lightning and hydra


What is Lightning ASRInstallationGet StartedDocsCodefactorLicense


Introduction

PyTorch Lightning is the lightweight PyTorch wrapper for high-performance AI research. PyTorch is extremely easy to use to build complex AI models. But once the research gets complicated and things like multi-GPU training, 16-bit precision and TPU training get mixed in, users are likely to introduce bugs. PyTorch Lightning solves exactly this problem. Lightning structures your PyTorch code so it can abstract the details of training. This makes AI research scalable and fast to iterate on.

This project is an example that implements the asr project with PyTorch Lightning. In this project, I trained a model consisting of a conformer encoder + LSTM decoder with Joint CTC-Attention. I hope this could be a guideline for those who research speech recognition.

Installation

This project recommends Python 3.7 or higher.
I recommend creating a new virtual environment for this project (using virtual env or conda).

Prerequisites

  • numpy: pip install numpy (Refer here for problem installing Numpy).
  • pytorch: Refer to PyTorch website to install the version w.r.t. your environment.
  • librosa: conda install -c conda-forge librosa (Refer here for problem installing librosa)
  • torchaudio: pip install torchaudio==0.6.0 (Refer here for problem installing torchaudio)
  • sentencepiece: pip install sentencepiece (Refer here for problem installing sentencepiece)
  • pytorch-lightning: pip install pytorch-lightning (Refer here for problem installing pytorch-lightning)
  • hydra: pip install hydra-core --upgrade (Refer here for problem installing hydra)

Install from source

Currently I only support installation from source code using setuptools. Checkout the source code and run the
following commands:

$ pip install -e .
$ ./setup.sh

Install Apex (for 16-bit training)

For faster training install NVIDIA's apex library:

$ git clone https://github.com/NVIDIA/apex
$ cd apex

# ------------------------
# OPTIONAL: on your cluster you might need to load CUDA 10 or 9
# depending on how you installed PyTorch

# see available modules
module avail

# load correct CUDA before install
module load cuda-10.0
# ------------------------

# make sure you've loaded a cuda version > 4.0 and < 7.0
module load gcc-6.1.0

$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Get Started

I use Hydra to control all the training configurations. If you are not familiar with Hydra I recommend visiting the Hydra website. Generally, Hydra is an open-source framework that simplifies the development of research applications by providing the ability to create a hierarchical configuration dynamically.

Download LibriSpeech dataset

You have to download LibriSpeech dataset that contains 1000h English speech corpus. But you can download simply by dataset_download option. If this option is True, download the dataset and start training. If you already have a dataset, you can set option dataset_download to False and specify dataset_path.

Training Speech Recognizer

You can simply train with LibriSpeech dataset like below:

  • Example1: Train the conformer-lstm model with filter-bank features on GPU.
$ python ./bin/main.py \
data=default \
dataset_download=True \
audio=fbank \
model=conformer_lstm \
lr_scheduler=reduce_lr_on_plateau \
trainer=gpu
  • Example2: Train the conformer-lstm model with mel-spectrogram features On TPU:
$ python ./bin/main.py \
data=default \
dataset_download=True \
audio=melspectrogram \
model=conformer_lstm \
lr_scheduler=reduce_lr_on_plateau \
trainer=tpu

Troubleshoots and Contributing

If you have any questions, bug reports, and feature requests, please open an issue on Github.

I appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Code Style

I follow PEP-8 for code style. Especially the style of docstrings is important to generate documentation.

License

This project is licensed under the MIT LICENSE - see the LICENSE.md file for details

Author

You might also like...
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Comments
  • incorrect spm params

    incorrect spm params

    python prepare_libri.py --dataset_path ../../data/lasr/libri/LibriSpeech --vocab_size 5000
    sentencepiece_trainer.cc(177) LOG(INFO) Running command: --input=spm_input.txt --model_prefix=tokenizer --vocab_size=5000 --model_type=unigram --pad_id=0 --bos_id=1 --eos_id=2
    sentencepiece_trainer.cc(77) LOG(INFO) Starts training with :
    trainer_spec {
      input: spm_input.txt
      input_format:
      model_prefix: tokenizer
      model_type: UNIGRAM
      vocab_size: 5000
      self_test_sample_size: 0
      character_coverage: 0.9995
      input_sentence_size: 0
      shuffle_input_sentence: 1
      seed_sentencepiece_size: 1000000
      shrinking_factor: 0.75
      max_sentence_length: 4192
      num_threads: 16
      num_sub_iterations: 2
      max_sentencepiece_length: 16
      split_by_unicode_script: 1
      split_by_number: 1
      split_by_whitespace: 1
      split_digits: 0
      treat_whitespace_as_suffix: 0
      required_chars:
      byte_fallback: 0
      vocabulary_output_piece_score: 1
      train_extremely_large_corpus: 0
      hard_vocab_limit: 1
      use_all_vocab: 0
      unk_id: 0
      bos_id: 1
      eos_id: 2
      pad_id: 0
      unk_piece: <unk>
      bos_piece: <s>
      eos_piece: </s>
      pad_piece: <pad>
      unk_surface:  ⁇
    }
    normalizer_spec {
      name: nmt_nfkc
      add_dummy_prefix: 1
      remove_extra_whitespaces: 1
      escape_whitespaces: 1
      normalization_rule_tsv:
    }
    denormalizer_spec {}
    Traceback (most recent call last):
      File "prepare_libri.py", line 65, in <module>
        main()
      File "prepare_libri.py", line 58, in main
        prepare_tokenizer(transcripts_collection[0], opt.vocab_size)
      File "lasr/dataset/preprocess.py", line 71, in prepare_tokenizer
        spm.SentencePieceTrainer.Train(cmd)
      File "anaconda3/envs/lasr/lib/python3.7/site-packages/sentencepiece/__init__.py", line 407, in Train
        return SentencePieceTrainer._TrainFromString(arg)
      File "anaconda3/envs/lasr/lib/python3.7/site-packages/sentencepiece/__init__.py", line 385, in _TrainFromString
        return _sentencepiece.SentencePieceTrainer__TrainFromString(arg)
    RuntimeError: Internal: /home/conda/feedstock_root/build_artifacts/sentencepiece_1612846348604/work/src/trainer_interface.cc(666) [insert_id(trainer_spec_.pad_id(), trainer_spec_.pad_piece())]
    
    
    opened by szalata 3
Releases(v0.1)
Owner
Soohwan Kim
Toward human-like AI
Soohwan Kim
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 86 Jun 11, 2021
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

?? Contributing to OpenSpeech ?? OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 3, 2023
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

null 2 Jan 16, 2022
Mirco Ravanelli 2.3k Dec 27, 2022
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022