Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Related tags

Deep Learning VOTEN
Overview

Configurations

  • Change HOME_PATH in CONFIG.py as the current path

Data Prepare

CENSINCOME

  • Download data
  • Put census-income.data and census-income.test in Data/Downloads/census-income
  • Run DataProcess/CENSINCOME/process.py

COVTYPE

  • Download data
  • Put covtype.data in Data/Downloads/COVTYPE/
  • Run DataProcess/COVTYPE/process.py

IJCAI18X

  • Download data
  • Generate train.csv and test.csv with xgboost1.py
  • Put train.csv and test.cvs in Data/RawData/IJCAI18X
  • Run DataProcess/IJCAI18X/process.py

KDDCUP19

  • Download data
  • Put train_queries.csv, train_plans.csv, train_clicks.csv, profiles.csv in Data/Downloads/KDDCUP19P1
  • Run DataProcess/KDC/process.py

Training

Train and save the model

  • Use the scripts in Train/{DATASET}/
  • Will train the model and save the model in Data/Saved/{DATASET}/[VOTERS or DNN]/model

Explanation

Generate intermediate results of voting analysis

  • Run SaveInter/save.py

Visualizations for explanation

  • Run E1 to E6 in Explain/analysis, the visualizations will be saved in Explain/out

Demo system for local/global decision path visualization

  • Open the path of the django project in Site/
  • Start the server: python manage.py runserver 0.0.0.0:8000
  • Use the system in browser with URL: 127.0.0.1:8000/{global/local}/{covtyp/kdc/ijcai/cens}

Citation

If you use this code, please cite our paper "Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation" published in NeurIPS 2021.

You might also like...
 Neural Oblivious Decision Ensembles
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

 Improving Deep Network Debuggability via Sparse Decision Layers
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Efficient Householder transformation in PyTorch
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Comments
  • Dataset KDD 2019

    Dataset KDD 2019

    Hello,

    I am Oumeima, I’m a Data Dcientist working at Instant System in France.

    I am currently working on a project and I need a dataset called trained_plans.csv from the KDD Cup 2019.

    I saw on your Github that you worked on that project, that’s why I am contacting you.

    Do you still have that dataset ? or would you know someone who still has it ? If you still have it, could you send it to me please ?

    Thanks a lot, Best regards, Oumeima EL GHARBI.

    opened by oumeima-elgharbi 0
Owner
null
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 6, 2023
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learning.

Manasi Sharma 2 Sep 27, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save <SAVE_NAME> --data <PATH_TO_DATA_DIR> --dataset <DATASET> --model <model_name> [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

null 86 Oct 5, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 3, 2022