i3DMM: Deep Implicit 3D Morphable Model of Human Heads

Related tags

Deep Learning i3DMM
Overview

i3DMM: Deep Implicit 3D Morphable Model of Human Heads

CVPR 2021 (Oral)

Arxiv | Poject Page

Teaser

This project is the official implementation our work, i3DMM. Much of our code is from DeepSDF's repository. We thank Park et al. for making their code publicly available.

The pretrained model is included in this repository.

Setup

  1. To get started, clone this repository into a local directory.
  2. Install Anaconda, if you don't already have it.
  3. Create a conda environment in the path with the following command:
conda create -p ./i3dmm_env
  1. Activate the conda environment from the same folder:
conda activate ./i3dmm_env
  1. Use the following commands to install required packages:
conda install pytorch=1.1 cudatoolkit=10.0 -c pytorch
pip install opencv-python trimesh[all] scikit-learn mesh-to-sdf plyfile

Preparing Data

Rigid Alignment

We assume that all the input data is rigidly aligned. Therefore, we provide reference 3D landmarks to align your test/training data. Please use centroids.txt file in the model folder to align your data to these landmarks. The landmarks in the file are in the following order:

  1. Right eye left corner
  2. Right eye right corner
  3. Left eye left corner
  4. Left eye right corner
  5. Nose tip
  6. Right lips corner
  7. Left lips corner
  8. Point on the chin The following image shows these landmarks. The centroids.txt file consists of 3D landmarks with coordinates x, y, z. Each file consists of 8 lines. Each line consists of the 3 values in 'x y z' order corresponding to the landmarks described above separated by a space.

Please see our paper for more information on rigid alignment.

Dataset

We closely follow ShapeNet Dataset's folder structure. Please see the a mesh folder in the dataset for an example. The dataset is assumed to be as follows:


   
    /
    
     /
     
      /models/
      
       .obj

       
        /
        
         /
         
          /models/
          
           .mtl 
           
            /
            
             /
             
              /models/
              
               .jpg 
               
                /
                
                 /
                 
                  /models/centroids.txt 
                  
                   /
                   
                    /
                    
                     /models/centroidsEars.txt 
                    
                   
                  
                 
                
               
              
             
            
           
          
         
        
       
      
     
    
   

The model name should be in a specific structure, xxxxx_eyy where xxxxx are 5 characters which identify an identity and yy are unique numbers to specify different expressions and hairstyles. We follow e01 - e10 for different expressions where e07 is neutral expression. e11-e13 are hairstyles in neutral expression. Rest of the expression identifiers are for test expressions.

The centroids.txt file contains landmarks as described in the alignment step. Additionally, to train the model, one could also have centroidEars.txt file which has the 3D ear landmarks in the following order:

  1. Left ear top
  2. Left ear left
  3. Left ear bottom
  4. Left ear right
  5. Right ear top
  6. Right ear left
  7. Right ear bottom
  8. Right ear right These 8 landmarks are as shown in the following image. The file is organized similar to centroids.txt. Please see the a mesh folder in the dataset for an example.

Once the dataset is prepared, create the splits as shown in model/headModel/splits/*.json files. These files are similar to the splits files in DeepSDF.

Preprocessing

The following commands preprocesses the meshes from the dataset described above and places them in data folder. The command must be run from "model" folder. To preprocess training data:

python preprocessData.py --samples_directory ./data --input_meshes_directory 
   
      -e headModel -s Train

   

To preprocess test data:

python preprocessData.py --samples_directory ./data --input_meshes_directory 
   
     -e headModel -s Test

   

'headModel' is the folder containing network settings for the 'specs.json'. The json file also contains split file and preprocessed data paths. The splits files are in model/headModel/splits/*.json These files indicate files that are for testing, training, and reference shape initialisation.

Training the Model

Once data is preprocessed, one can train the model with the following command.

python train_i3DMM.py -e headModel

When working with a large dataset, please consider using batch_split option with a power of 2 (2, 4, 8, 16 etc.). The following command is an example.

python train_i3DMM.py -e headModel --batch_split 2

Additionally, if one considers using landmark supervision or ears constraints for long hair (see paper for details), please export the centroids and ear centroids as a dictionaries with npy files (8 face landmarks: eightCentroids.npy, ear landmarks: gtEarCentroids.npy).

An example entry in the dictionary: {"xxxxx_eyy: 8x3 numpy array"}

Fitting i3DMM to Preprocessed Data

Please see the preprocessing section for preparing the data. Once the data is ready, please use the following command to fit i3DMM to the data.

To save as image:

python fit_i3DMM_to_mesh.py -e headModel -c latest -d data -s 
   
     --imNM True

   

To save as a mesh:

python fit_i3DMM_to_mesh.py -e headModel -c latest -d data -s 
   
     --imNM False

   

Test dataset can be downloaded with this link. Please extract and move the 'heads' folder to dataset folder.

Citation

Please cite our paper if you use any part of this repository.

@inproceedings {yenamandra2020i3dmm,
 author = {T Yenamandra and A Tewari and F Bernard and HP Seidel and M Elgharib and D Cremers and C Theobalt},
 title = {i3DMM: Deep Implicit 3D Morphable Model of Human Heads},
 booktitle = {Proceedings of the IEEE / CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
 month = {June},
 year = {2021}
}
Comments
  • The results of training is bad

    The results of training is bad

    Hello, I follow you advice to prepare the data and train the model, but the result is bad. To make sure my data is correct, I train the model with one model in your test data, the result is bad too. Do you know the reason ? The following are my steps of training:

    1. I set train_color=0, train_geometry=0, and train_reference=1, to train to refNet in 1001 Epoch
    2. I set train_color=1, train_geometry=1, and train_reference=0, to train all networks in 5000 Epoch

    The following are the fitting results

    my own dataset 00340_e30

    your test dataset 10101_e16

    Looking forward your apply!

    opened by xusensun 11
  • Anotation Transfer

    Anotation Transfer

    Hi, thank you for making your work open-source!

    I want to know how to do the annotation transfer you mentioned in section 4.6 of your paper. I didn't see any mention of it in the code.

    Thank you.

    opened by victorgmlyra 1
  • Fit to face image?

    Fit to face image?

    Hi,

    Is it possible to fit the pretrained model into face images? Not fitting into a mesh. I have face images without mesh, and want to fit the pretrained i3DMM model to them.

    opened by apple2373 0
  • Question about data release

    Question about data release

    Hi, Excellent work and thank you for sharing your code! I did not find your data in the dataset folder. I wonder if you have any plan to release your data? Thank you very much! Best regards!

    opened by Jia-Wei-Liu 0
  • Hi, I got a bad reconstruction result of mesh from the reference network

    Hi, I got a bad reconstruction result of mesh from the reference network

    I selected the "10084_e17" model from the test set you provided, and tried to use it to pretrain the reference network as your paper. However, when I try to reconstruct the training result, I found it's terribly bad. Could you please tell me what's wrong with it? Here is my result: image and there are lots of holes on it image

    And the ground truth: image

    I use these three command:

    1. prepare the training data set python preprocessData.py --samples_directory ./data --input_meshes_directory ../dataset -e headModel -s Train
    2. train the model python train_i3DMM.py -e headModel -s ./headModel/splits/referenceShapeSample.json -d data -r 1
    3. reconstruct the reference network result python fit_i3DMM_to_mesh.py -e headModel -s ./headModel/splits/referenceShapeSample.json -d data -r 1
    opened by neverstopZyy 1
Owner
Tarun Yenamandra
Tarun Yenamandra
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

null 38 Dec 27, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

null 9 Feb 23, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

null 2 Dec 26, 2021
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 3, 2023
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

null 129 Jan 4, 2023
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

null 27 Jul 20, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 8, 2023
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 9, 2021
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 7, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

null 103 Dec 22, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 8, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 6, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022