Platform-agnostic AI Framework 🔥

Overview

GitHub last commit (branch) Documentation Status Build Status Downloads Downloads Docker Pulls

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework programming. layer list

🇨🇳 TensorLayerX 是一个跨平台开发框架,可以运行在各类操作系统和AI硬件上,并支持混合框架的开发。支持列表

🇷🇺 TensorLayerX

🇸🇦 TensorLayerX

TensorLayerX

Compare with TensorLayer, TensorLayerX (TLX) is a brand new seperated project for platform-agnostic purpose.

Examples

Quick Start

  • Installation
# install from pypi
pip3 install tensorlayerx 
# install from Github
pip3 install git+https://github.com/tensorlayer/tensorlayerx.git 
# install from OpenI
pip3 install
  • Tutorial

  • Discussion: Slack , [QQ-Group] , [WeChat-Group]

Contact

Citation

If you find TensorLayerX useful for your project, please cite the following papers:

@article{tensorlayer2017,
    author  = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
    journal = {ACM Multimedia},
    title   = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
    url     = {http://tensorlayer.org},
    year    = {2017}
}

@inproceedings{tensorlayer2021,
  title={TensorLayer 3.0: A Deep Learning Library Compatible With Multiple Backends},
  author={Lai, Cheng and Han, Jiarong and Dong, Hao},
  booktitle={2021 IEEE International Conference on Multimedia \& Expo Workshops (ICMEW)},
  pages={1--3},
  year={2021},
  organization={IEEE}
}
Comments
  • load pretrained model from .pth

    load pretrained model from .pth

    I write a model using Pytorch, and save its state_dict() to .pth. Now I want to use tensorlayerx to write it, so other people (using tensorflow etc.) can use this model. My model definition is same in Pytorch and Tensorlayerx, but I can't load pretrained model of .pth in tensorlayerx. Below is my code. (simple model is used here for clarity, the actual model is more complex than this)

    """
    a_torch.py
    """
    import torch
    from torch import nn
    
    class A(nn.Module):
        def __init__(self):
            super(A, self).__init__()
            self.conv = nn.Conv2d(3, 16, kernel_size=1)
            self.bn = nn.BatchNorm2d(16)
            self.relu = nn.ReLU(inplace=True)
        
        def forward(self, x):
            return self.act(self.bn(self.conv(x)))
    
    if __name__ == '__main__':
        a = A()
        torch.save(a.state_dict(), 'a.pth')
    
    """
    a_tlx.py
    """
    import tensorlayerx as tlx
    import torch
    from tensorlayerx import nn
    
    class A(nn.Module):
        def __init__(self):
            super(A, self).__init__()
            self.conv = nn.Conv2d(16, kernel_size=1, data_format='channels_first')
            self.bn = nn.BatchNorm2d(num_features=16, data_format='channels_first')
            self.relu = nn.activation.ReLU()
        
        def forward(self, x):
            return self.act(self.bn(self.conv(x)))
    
    def pth2npz(pth_path):
        temp = torch.load(pth_path)   # type(temp) = OrderedDict
        tlx.files.save_npz_dict(temp.items(), pth_path.split('.')[0] + '.npz')
    
    if __name__ == '__main__':
        a = A()
        pth2npz('a.pth')
        tlx.files.load_and_assign_npz_dict('a.npz', a)
    

    First run a_torch.py, then run a_tlx.py. The error is below.

    Using PyTorch backend.
    Traceback (most recent call last):
      File "test/test_03.py", line 25, in <module>
        tlx.files.load_and_assign_npz_dict('test/a.npz', a)
      File "/home/mchen/anaconda3/envs/kpconv/lib/python3.8/site-packages/tensorlayerx/files/utils.py", line 2208, in load_and_assign_npz_dict
        raise RuntimeError(
    RuntimeError: Weights named 'conv.weight' not found in network. Hint: set argument skip=Ture if you want to skip redundant or mismatch weights
    

    Then I debug and look at the tlx.files.load_and_assign_npz_dict() source code. I find tensorlayerx parameter name is different from PyTorch. This results in key mismatch when loading pre-trained model. In the following two figures, the first is the parameter name of PyTorch and the second is the parameter name of TensorLayerx. 屏幕截图 2022-08-07 202607 屏幕截图 2022-08-07 202555 Now the solution I can think of is to write a key map table, but it is hard for large model. So can you give me a simple solution ? (same model definition in pytorch and tensorlayerx, load pretrained model in .pth) :grin:

    opened by HaoRan-hash 2
  • tlx.nn.Swish()与paddle.nn.Swish()的结果有细微差别

    tlx.nn.Swish()与paddle.nn.Swish()的结果有细微差别

    tlx:

    [-0.16246916, 1.40204561, 0.85213524, ..., 0.85800600, 1.10605156, 1.11549926], [-0.04873780, 0.28885114, 0.15792340, ..., 0.12375022, 0.22599602, 0.53073120], [-0.09840852, 0.40172467, 0.15602632, ..., 0.09853011, 0.29177830, 0.52241892]

    paddle:

    [-0.16246916, 1.40204573, 0.85213524, ..., 0.85800600, 1.10605145, 1.11549926], [-0.04873780, 0.28885114, 0.15792342, ..., 0.12375022, 0.22599602, 0.53073120], [-0.09840852, 0.40172467, 0.15602632, ..., 0.09853011, 0.29177833, 0.52241892]

    opened by moshizhiyin 1
  • add some functions

    add some functions

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • Fix docs

    Fix docs

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • add some functions

    add some functions

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • add paddle backend ops

    add paddle backend ops

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • fix swish and prelu

    fix swish and prelu

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • Fix requirements oneflow backend

    Fix requirements oneflow backend

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • Oneflow dev

    Oneflow dev

    Description

    oneflow backend:

    backends/ops/oneflow_nn.py
    backends/ops/oneflow_backend.py
    nn/core/core_oneflow.py
    

    tutorials: 6 MarkDown files in /home/user/pyprojects/TensorLayerX/docs/tutorials

    other: Training progressbar using rich bugs fixed

    opened by QuantumLiu 0
  • Add Training Progress Bar

    Add Training Progress Bar

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • Add loss monitoring to training

    Add loss monitoring to training

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • net.set_eval() seems not work well

    net.set_eval() seems not work well

    Issue Description

    When I test my pspnet model, I find if not use "with torch.no_grad()" or "gradient()", the gpu memory will be full after testing several photos. I guess set_eval() function seems to have failed. Or I used the wrong method to test? This is my code, thank you!

    In addition, I found that the batch size will affect the final test results. If net. eval() is not performed in the pytorch, it will cause similar problems. It seems that this is caused by the BatchNorm layer.

        os.environ['TL_BACKEND'] = 'torch'
        tlx.set_device(device='GPU', id=3)
        # ...
        net = models[backend]()
        net.load_weights('test.npz', format='npz_dict', skip=True)
        test_dataset = MyDataset(root_dir="test/")
        test_loader = DataLoader(test_dataset, batch_size=4, shuffle=True)
    
        train_weights = net.trainable_weights
        scheduler = tlx.optimizers.lr.StepDecay(learning_rate=0, step_size=30, gamma=0.5, last_epoch=-1)
        optimizer = tlx.optimizers.Adam(lr=scheduler)
    
        hist = np.zeros((num_classes, num_classes))
        net.set_eval()
        # with torch.no_grad():
        for x, y, y_cls in test_loader:
            _out, _out_cls = net(x)
            seg_loss = tlx.losses.softmax_cross_entropy_with_logits(_out, y)
            cls_loss = tlx.losses.sigmoid_cross_entropy(_out_cls, y_cls)
            _loss = seg_loss + 1 * cls_loss
            # grads = optimizer.gradient(_loss, train_weights)
            # optimizer.apply_gradients(zip(grads, train_weights))
            '''
                compute miou matrix
            '''
            out = tlx.convert_to_numpy(_out)
            y = tlx.convert_to_numpy(y)
            out = np.argmax(out, axis=1)
            for i in range(0, out.shape[0]):
                pred = out[i]
                gt = y[i]
                hist += fast_hist(gt.flatten(), pred.flatten(), num_classes)
                
        # compute miou then print
        mIoUs = per_class_iu(hist)
        for ind_class in range(num_classes):
            print('===>' + name_classes[ind_class] + ':\t' + str(round(mIoUs[ind_class] * 100, 2)))
        print('===> mIoU: ' + str(round(np.nanmean(mIoUs) * 100, 2)))
        print("test loss: {}".format(train_loss))
    
    
    opened by qzhiyue 0
  • tensorlayerx.ops.Pad不支持“channels_first”的data_format,后续会补充“channels_first”的格式吗?

    tensorlayerx.ops.Pad不支持“channels_first”的data_format,后续会补充“channels_first”的格式吗?

    New Issue Checklist

    Issue Description

    [INSERT DESCRIPTION OF THE PROBLEM]

    Reproducible Code

    • Which OS are you using ?
    • Please provide a reproducible code of your issue. Without any reproducible code, you will probably not receive any help.

    [INSERT CODE HERE]

    # ======================================================== #
    ###### tensorlayerx.ops.Pad源码######
    # ======================================================== #
    
    class Pad(object):
    
        def __init__(self, paddings, mode="REFLECT", constant_values=0):
            if mode not in ['CONSTANT', 'REFLECT', 'SYMMETRIC']:
                raise Exception("Unsupported mode: {}".format(mode))
            if mode == 'SYMMETRIC':
                raise NotImplementedError
            self.paddings = paddings
            self.mode = mode.lower()
            self.constant_values = constant_values
    
        def __call__(self, x):
            if len(x.shape) == 3:
                data_format = 'NLC'
                self.paddings = self.correct_paddings(len(x.shape), self.paddings, data_format)
            elif len(x.shape) == 4:
                data_format = 'NHWC'
                self.paddings = self.correct_paddings(len(x.shape), self.paddings, data_format)
            elif len(x.shape) == 5:
                data_format = 'NDHWC'
                self.paddings = self.correct_paddings(len(x.shape), self.paddings, data_format)
            else:
                raise NotImplementedError('Please check the input shape.')
            return pd.nn.functional.pad(x, self.paddings, self.mode, value=self.constant_values, data_format=data_format)
    
        def correct_paddings(self, in_shape, paddings, data_format):
            if in_shape == 3 and data_format == 'NLC':
                correct_output = [paddings[1][0], paddings[1][1]]
            elif in_shape == 4 and data_format == 'NHWC':
                correct_output = [paddings[2][0], paddings[2][1], paddings[1][0], paddings[1][1]]
            elif in_shape == 5 and data_format == 'NDHWC':
                correct_output = [
                    paddings[3][0], paddings[3][1], paddings[2][0], paddings[2][1], paddings[1][0], paddings[1][1]
                ]
            else:
                raise NotImplementedError('Does not support channels first')
            return correct_output
    
    
    opened by zhxiucui 0
  • tenorlayerx.nn没有paddle.nn.InstanceNorm2D对应的算子

    tenorlayerx.nn没有paddle.nn.InstanceNorm2D对应的算子

    paddle.nn.InstanceNorm2D(num_features, epsilon=1e-05, momentum=0.9, weight_attr=None, bias_attr=None, data_format="NCHW", name=None) image 更多见接口文档https://www.paddlepaddle.org.cn/documentation/docs/zh/2.3/api/paddle/nn/InstanceNorm2D_cn.html#instancenorm2d

    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    import tensorlayerx as tlx
    
    opened by zhxiucui 0
  • tensorlayerx没有优化函数的基类,  只能使用tlx.optimizers.paddle_optimizers.Optimizer来判断

    tensorlayerx没有优化函数的基类, 只能使用tlx.optimizers.paddle_optimizers.Optimizer来判断

    New Issue Checklist

    Issue Description

    [INSERT DESCRIPTION OF THE PROBLEM]

    Reproducible Code

    • Which OS are you using ?
    • Please provide a reproducible code of your issue. Without any reproducible code, you will probably not receive any help.

    [INSERT CODE HERE]

    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    # paddle
    import paddle
    x = 13
    print(isinstance(x, paddle.optimizers.Optimizer))
    
    # tensorlayer
    import os
    os.environ['TL_BACKEND'] = 'paddle'
    import tensorlayer as tlx
    x = 13
    print(isinstance(x, tlx.optimizers.paddle_optimizers.Optimizer))
    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    
    opened by zhxiucui 0
  • tensorlayerx.nn.UpSampling2d当data_format=

    tensorlayerx.nn.UpSampling2d当data_format="channels_first"和paddle.nn.Upsample输出结果维度不一致

    New Issue Checklist

    Issue Description

    [INSERT DESCRIPTION OF THE PROBLEM]

    Reproducible Code

    • Which OS are you using ?
    • Please provide a reproducible code of your issue. Without any reproducible code, you will probably not receive any help.

    [INSERT CODE HERE]

    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    import os
    import paddle
    os.environ['TL_BACKEND'] = 'paddle'
    import tensorlayerx as tlx
    
    tlx_ni = tlx.nn.Input([4, 32, 50, 50], name='input')
    tlx_out = tlx.nn.UpSampling2d(scale=(2, 2), data_format="channels_first")(tlx_ni)
    print(f"tlx_out.shape={tlx_out.shape}")
    
    pd_ni = paddle.rand([4, 32, 50, 50], dtype="float32")
    pd_out = paddle.nn.Upsample(scale_factor=2, data_format="NCHW")(pd_ni)
    print(f"pd_out.shape={pd_out.shape}")
    
    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    

    输出结果 tlx_out.shape=[4, 32, 64, 100] pd_out.shape=[4, 32, 100, 100]

    opened by zhxiucui 0
Releases(v0.5.7)
  • v0.5.7(Sep 19, 2022)

    TensorLayerX 0.5.7 is a maintenance release . In this release , we have the following changes.

    • Fix PyTorch back-end depthtospace operator.
    • Fix where the training API could not accept multiple inputs.
    • Add the example of importing trained models from PyTorch or Paddle to TensorLayerX.
    • Add roll and logsoftmax operators.
    • Update the model trained by any backend of TensorLayerX can be imported to any backend of TensorLayerX.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.6(Jul 15, 2022)

    TensorLayerX 0.5.6 is a maintenance release . In this release , we have the following changes .

    • Fixed Sequential mode ONNX node collection .
    • Fixed bug with RNN LSTM GRU training parameters .
    • Fixed the inconsistency of different backends parameters of DepthWiseConv2d.
    • Fixed the bug of saving parameters to npz.
    • Updated padding layers.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.5(Jun 27, 2022)

    TensorLayerX 0.5.5 is a maintenance release.In this release, we have the following changes.

    • Added get_device, to_device operator.
    • Changed the parameter name of the average pooling layer to (AvgPool1d, GlobalAvgPool1d, AdaptiveAvgPool1d, AvgPool2d, GlobalAvgPool2d Etc.)
    • Fixed LSTM RNN GRU.
    • Fixed a bug where ParameterList and ParameterDict training parameters on the TensorFlow backend were not collected.
    • Fixed support for MindSpore1.7.0 version.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.4(May 31, 2022)

    TensorLayerX 0.5.4 is a maintenance release.In this release, we have the following changes.

    • Added documentation for metric functions
    • Add Einsum
    • Fixed PyTorch back-end optimizers
    • Fixed preprocessing when activation functions are used as parameters

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.3(May 16, 2022)

    TensorLayerX 0.5.3 is a maintenance release.In this release, we have the following changes.

    • Added kernel_size, stride, dilation parameters can be int or tuple.
    • Added padding mode can be int, tuple, or str. str is "SAME" or "VALID".
    • Added TensorLayerX model topology for ONNX model export, can generate topology by model.build_graph(inputs).
    • Fix the problem of slow training speed due to MindSpore optimizer wrapping.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.1(Apr 14, 2022)

  • v0.5.0(Mar 7, 2022)

    TensorLayerX 0.5.0 is a maintenance release,it supports TensorFlow、MindSpore and PaddlePaddle backends, and supports some PyTorch operator backends, allowing users to run the code on different hardware like Nvidia-GPU and Huawei-Ascend. Feel free to use it and make suggestions.

    Source code(tar.gz)
    Source code(zip)
Owner
TensorLayer Community
A neutral open community to promote AI technology.
TensorLayer Community
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It orchestrates the end-to-end deep learning workflow allowing to train networks with easy-to-use robust high-performance libraries such as Pytorch-Lightning and Fastai

airctic 789 Dec 29, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 4, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

null 38 Dec 15, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

null 63 Nov 18, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 5, 2023
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

null 64 Jan 5, 2023
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

null 47 Dec 28, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 5, 2023
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

null 7 Aug 24, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022