I am trying to run the WideResNet_Trades model to run the benchmark using the benchmark.iteration_cli interface. However I am getting an error shown below.
Using TensorFlow backend.
WARNING:tensorflow:From /home/itachi/repos/ares/ares/benchmark/iteration_cli.py:100: The name tf.logging.INFO is deprecated. Please use tf.compat.v1.logging.INFO instead.
WARNING:tensorflow:From /home/itachi/repos/ares/ares/benchmark/iteration_cli.py:105: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
WARNING:tensorflow:From /home/itachi/repos/ares/ares/benchmark/iteration_cli.py:107: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
2021-05-22 01:29:30.918086: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2021-05-22 01:29:30.946135: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2799925000 Hz
2021-05-22 01:29:30.946691: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x559ebfc9e4c0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2021-05-22 01:29:30.946708: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2021-05-22 01:29:30.949124: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2021-05-22 01:29:31.011989: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-05-22 01:29:31.012647: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x559ebfca0320 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2021-05-22 01:29:31.012678: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): GeForce GTX 1060, Compute Capability 6.1
2021-05-22 01:29:31.012868: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-05-22 01:29:31.013139: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
2021-05-22 01:29:31.013309: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.0'; dlerror: libcudart.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /data/Softwares_Ubuntu/libs/cudnn-10.0-linux-x64-v7.4.2.24/cuda/lib64:/home/itachi/miniconda3/envs/cuda_toolkit/lib/
2021-05-22 01:29:31.013430: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcublas.so.10.0'; dlerror: libcublas.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /data/Softwares_Ubuntu/libs/cudnn-10.0-linux-x64-v7.4.2.24/cuda/lib64:/home/itachi/miniconda3/envs/cuda_toolkit/lib/
2021-05-22 01:29:31.013538: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcufft.so.10.0'; dlerror: libcufft.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /data/Softwares_Ubuntu/libs/cudnn-10.0-linux-x64-v7.4.2.24/cuda/lib64:/home/itachi/miniconda3/envs/cuda_toolkit/lib/
2021-05-22 01:29:31.013642: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcurand.so.10.0'; dlerror: libcurand.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /data/Softwares_Ubuntu/libs/cudnn-10.0-linux-x64-v7.4.2.24/cuda/lib64:/home/itachi/miniconda3/envs/cuda_toolkit/lib/
2021-05-22 01:29:31.013730: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusolver.so.10.0'; dlerror: libcusolver.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /data/Softwares_Ubuntu/libs/cudnn-10.0-linux-x64-v7.4.2.24/cuda/lib64:/home/itachi/miniconda3/envs/cuda_toolkit/lib/
2021-05-22 01:29:31.013799: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusparse.so.10.0'; dlerror: libcusparse.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /data/Softwares_Ubuntu/libs/cudnn-10.0-linux-x64-v7.4.2.24/cuda/lib64:/home/itachi/miniconda3/envs/cuda_toolkit/lib/
2021-05-22 01:29:31.016472: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2021-05-22 01:29:31.016493: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1662] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
2021-05-22 01:29:31.016511: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1180] Device interconnect StreamExecutor with strength 1 edge matrix:
2021-05-22 01:29:31.016521: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1186] 0
2021-05-22 01:29:31.016529: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1199] 0: N
WARNING:tensorflow:From /home/itachi/repos/ares/ares/attack/utils.py:8: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
WARNING:tensorflow:From /home/itachi/repos/ares/ares/dataset/utils.py:6: DatasetV1.make_one_shot_iterator (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use for ... in dataset:to iterate over a dataset. If using tf.estimator, return the Dataset object directly from your input function. As a last resort, you can use tf.compat.v1.data.make_one_shot_iterator(dataset).
Traceback (most recent call last):
File "/home/itachi/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1365, in _do_call
return fn(*args)
File "/home/itachi/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1350, in _run_fn
target_list, run_metadata)
File "/home/itachi/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1443, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value Variable_5
[[{{node Variable_5/read}}]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/itachi/miniconda3/envs/ares_benchmark/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/home/itachi/miniconda3/envs/ares_benchmark/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/itachi/repos/ares/ares/benchmark/iteration_cli.py", line 144, in <module>
rs = benchmark.run(dataset, logger)
File "/home/itachi/repos/ares/ares/benchmark/iteration.py", line 256, in run
return self._run(dataset, logger)
File "/home/itachi/repos/ares/ares/benchmark/iteration.py", line 113, in _run_basic
labels, dists = next(g)
File "/home/itachi/repos/ares/ares/attack/bim.py", line 115, in _batch_attack_generator
self._session.run(self.setup_xs, feed_dict={self.xs_ph: xs})
File "/home/itachi/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 956, in run
run_metadata_ptr)
File "/home/itachi/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1180, in _run
feed_dict_tensor, options, run_metadata)
File "/home/itachi/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1359, in _do_run
run_metadata)
File "/home/itachi/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1384, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value Variable_5
[[node Variable_5/read (defined at /miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py:1748) ]]
Original stack trace for 'Variable_5/read':
File "/miniconda3/envs/ares_benchmark/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/repos/ares/ares/benchmark/iteration_cli.py", line 138, in <module>
session, cw_n_points=args.cw_n_points, **kwargs)
File "/repos/ares/ares/benchmark/iteration.py", line 61, in __init__
self.attack = load_attack(attack_name, init_kwargs)
File "/repos/ares/ares/benchmark/utils.py", line 37, in load_attack
return attack_class(**kwargs)
File "/repos/ares/ares/attack/pgd.py", line 34, in __init__
self.rand_init_eps_var = tf.Variable(tf.zeros((self.batch_size,), dtype=self.model.x_dtype))
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/ops/variables.py", line 258, in __call__
return cls._variable_v1_call(*args, **kwargs)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/ops/variables.py", line 219, in _variable_v1_call
shape=shape)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/ops/variables.py", line 197, in <lambda>
previous_getter = lambda **kwargs: default_variable_creator(None, **kwargs)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/ops/variable_scope.py", line 2519, in default_variable_creator
shape=shape)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/ops/variables.py", line 262, in __call__
return super(VariableMetaclass, cls).__call__(*args, **kwargs)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/ops/variables.py", line 1688, in __init__
shape=shape)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/ops/variables.py", line 1872, in _init_from_args
self._snapshot = array_ops.identity(self._variable, name="read")
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/util/dispatch.py", line 180, in wrapper
return target(*args, **kwargs)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/ops/array_ops.py", line 203, in identity
ret = gen_array_ops.identity(input, name=name)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/ops/gen_array_ops.py", line 4239, in identity
"Identity", input=input, name=name)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/framework/op_def_library.py", line 794, in _apply_op_helper
op_def=op_def)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 3357, in create_op
attrs, op_def, compute_device)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 3426, in _create_op_internal
op_def=op_def)
File "/miniconda3/envs/ares_benchmark/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 1748, in __init__
self._traceback = tf_stack.extract_stack()
Loading tensorflow session...
Loading model...
Loading dataset...
Loading attack...
Configuring attack...
Running benchmark
Command:
python3 -m ares.benchmark.iteration_cli --method pgd --dataset cifar10 --count 100 --goal ut --distance-metric l_inf --offset 0 --output ./out_logs --batch-size 2 --iteration 10 example/cifar10/wideresnet_trades.py --logger
Below is my environment details:
OS: Ubuntu 20.04
Python: 3.7
Pytorch 1.5.0
Tensorflow: 1.15.4
Keras: 2.3.1
Does it have to do something with my setup or there's a bug? Please help me.