A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

Related tags

Deep Learning LABES
Overview

LABES

This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning". [paper link]

Requirements

  • Python 3.6
  • PyTorch 1.2.0
  • NLTK 3.4.5

We use some NLP tools in NLTK which can be installed through:

python -m nltk.downloader stopwords punkt wordnet

Data Preparation

  1. Unzip raw data of CamRest676, Stanford In-Car Assistant and MultiWOZ 2.1, and also the GloVe word embeddings into the corresponding directories. Note that file "compressed_data_2.0.json.zip" is the raw MultiWOZ 2.0 data from this repository, for normalizing entity names in the data preprocessing process.

  2. Data Preprocess Raw data are preprocessed automatically during the first run of each dataset. See datasets.py and multiwoz_preprocess.py for what have been done in the data preprocessing process.

Running Experiments

Training

python train.py -mode train -dataset [camrest|kvret|multiwoz] -method cvae -c spv_proportion=[a integer between 0-100] exp_no=your_exp_name

Testing

python train.py -mode test -dataset [camrest|kvret|multiwoz] -method cvae -c eval_load_path=[experimental path]

Reproducibility

We release the models that obtain the best results in Table 1 and Table 2. Run the following commands for model evaluation.

python train.py -mode test -dataset camrest -method cvae -c eval_load_path=experiments/camrest/camrest_best beam_search=True
python train.py -mode test -dataset kvret -method cvae -c eval_load_path=experiments/kvret/kvret_best beam_search=True
python train.py -mode test -dataset multiwoz -method bssmc -c eval_load_path=experiments/multiwoz/multiwoz_best beam_search=True

Bug Report

Feel free to create an issue or send email to [email protected]

You might also like...
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Official code for
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

Usable Implementation of
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

🌈 PyTorch Implementation for EMNLP'21 Findings
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

 Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

Comments
  • 跑测试的时候发生错误

    跑测试的时候发生错误

    RuntimeError: Error(s) in loading state_dict for SemiCVAE: Missing key(s) in state_dict: "u_encoder_q.embedding.weight", "u_encoder_q.gru.weight_ih_l0", "u_encoder_q.gru.weight_hh_l0", "u_encoder_q.gru.bias_ih_l0", "u_encoder_q.gru.bias_hh_l0", "u_encoder_q.gru.weight_ih_l0_reverse", "u_encoder_q.gru.weight_hh_l0_reverse", "u_encoder_q.gru.bias_ih_l0_reverse", "u_encoder_q.gru.bias_hh_l0_reverse", "m_encoder.embedding.weight", "m_encoder.gru.weight_ih_l0", "m_encoder.gru.weight_hh_l0", "m_encoder.gru.bias_ih_l0", "m_encoder.gru.bias_hh_l0", "m_encoder.gru.weight_ih_l0_reverse", "m_encoder.gru.weight_hh_l0_reverse", "m_encoder.gru.bias_ih_l0_reverse", "m_encoder.gru.bias_hh_l0_reverse", "qz_decoder.gru.weight_ih_l0", "qz_decoder.gru.weight_hh_l0", "qz_decoder.gru.bias_ih_l0", "qz_decoder.gru.bias_hh_l0", "qz_decoder.Wgen.weight", "qz_decoder.Wgen.bias", "qz_decoder.Wcp_u.weight", "qz_decoder.Wcp_u.bias", "qz_decoder.Wcp_m.weight", "qz_decoder.Wcp_m.bias", "qz_decoder.Wcp_pz.weight", "qz_decoder.Wcp_pz.bias", "qz_decoder.attn.attn.weight", "qz_decoder.attn.attn.bias", "qz_decoder.attn.v.weight".

    是不是放的模型不对啊?

    opened by Gs-Zhang 2
Owner
null
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 6, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 12 Sep 26, 2021
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

null 34 Dec 31, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 5, 2023
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 8, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

 同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 4, 2023
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022