This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Overview

Nonlinear Risk Bounded Robot Motion Planning

This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car obstacle in a CARLA simulator. The ego_vehicle has to consider all the system and perception uncertainties to generate a risk-bounded motion plan and execute it with coherent risk assessment. Coherent risk assessment for a nonlinear robot like the car in this simulation is made possible using nonlinear model predictive control (NMPC) based steering law combined with Unscented Kalman filter for state estimation purpose. Finally, distributionally robust chance constraints applied using a temporal logic specifications evaluate the risk of a trajectory before being added to the sequence of trajectories forming a motion plan from the start to the destination.

Click the picture to watch the corresponding youtube video supporting our work

Motion Planning Using Carla Simulator

The code in this repository implements the algorithms and ideas from our following paper:

  1. V. Renganathan, S. Safaoui, A. Kothari, I. Shames, T. Summers, Risk Bounded Nonlinear Robot Motion Planning With Integrated Perception & Control, Submitted to the Special Issue on Risk-aware Autonomous Systems: Theory and Practice, Artificial Intelligence Journal, 2021.

Dependencies

  • Python 3.5+ (tested with 3.7.6)
  • Numpy
  • Scipy
  • Matplotlib
  • Casadi
  • Namedlist
  • Pickle
  • Carla

Installing

You will need the following two items to run the codes. After that there is no other formal package installation procedure; simply download this repository and run the Python files.

  • CARLA SIMULATOR VERSION: 0.9.10
  • UNREAL ENGINE VERSION: 4.24.3

Modules of an autonomy stack

There are two main modules for understanding this whole package

  1. First, a high level motion planner has to run and it will generate a reference trajectory for the car from start to the end
  2. Second, a low level tracking controller will enable the car to track the reference trajectory despite the realized noises.

Procedure to run the code

  1. Run the python code Generate_Monte_Carlo_Noises.py which will generate and load the required noise parameters and data required for simulation into pickle files
  2. Run the python code Run_Path_Planner.py
  3. The code will run for specified number of iterations and produces all required data
  4. Then load the cooresponding pickle file data in file main.py in the line number #488.
  5. Run the main.py file with the Carla executable being open already
  6. The simulation will run in the Carla simulator where the car will track the reference trajectory and results are stored in pickle files
  7. To see the tracking results, run the python file Tracked_Path_Plotter.py

Running Monte-Carlo Simulations

  1. Create a new folder called monte_carlo_results in the same directory where the python file monte_carlo_car.py resides.
  2. Update the trial_num at line #1554 in the file monte_carlo_car.py and run it while the Carla executable is open (It will automatically load the noise realizations corresponding to the trial_num from the pickle files)
  3. After the simulation is over, automatically the results are stored under the folder monte_carlo_results with a specific trial name
  4. Repeat the process by changing trial number in step 2 and run again.
  5. Once the all trials are completed, run the python file monte_carlo_results_plotter.py to plot the monte-carlo simulation results

Variations

  • Instead of Distributionally robust chance constraints, if you would like to have a simple Gaussian Chance Constraints, then change self.DRFlag = False in line 852 in the file DR_RRTStar_Planner.py
  • Choose your own state estimator UKF or EKF by commenting and uncommenting the corresponding estimator in lines 26-27 of file State_Estimator.py

Funding Acknowledgement

This work is partially supported by Defence Science and Technology Group, through agreement MyIP: ID10266 entitled Hierarchical Verification of Autonomy Architectures, the Australian Government, via grant AUSMURIB000001 associated with ONR MURI grant N00014-19-1-2571, and by the United States Air Force Office of Scientific Research under award number FA2386-19-1-4073.

Contributing Authors

  1. Venkatraman Renganathan - UT Dallas
  2. Sleiman Safaoui - UT Dallas
  3. Aadi Kothari - UT Dallas
  4. Benjamin Gravell - UT Dallas
  5. Dr. Iman Shames - Australian National University
  6. Dr. Tyler Summers - UT Dallas

Affiliation

TSummersLab - Control, Optimization & Networks Laboratory (CONLab)

You might also like...
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Unadversarial Examples: Designing Objects for Robust Vision
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI Gym toolkit.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

 Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

Owner
null
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 5, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 4, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 7, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

null 87 Jan 7, 2023
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021