Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Overview

Paradigm Shift in NLP

Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintained here, such as a full list of papers of paradigm shift, an interactive Sankey diagram to depict the trend of paradigm shift, etc.

What is paradigm shift?

First of all, what is paradigm, and what is paradigm shift?

Paradigm is the general framework to model a class of tasks. For example, sequence labeling (SeqLab) is a popular paradigm to solve named entity recognition (NER). We summarize the mainstream paradigms that are widely used for common NLP tasks as: Class, Matching, SeqLab, MRC, Seq2Seq, Seq2ASeq, (M)LM.

Paradigm shift is a phenomena of solving a task that is usually solved with some paradigm with another paradigm. For example, Li et al. (2020) uses the MRC paradigm to solve NER, which is previously solved with SeqLab, then we can say that the paradigm of NER shifted from SeqLab to MRC.

The figure below shows the observed shift (or transfer) of the seven paradigms in recent years.

Paradigm shift in NLP tasks

We collect the papers of paradigm shift in the table below, which is an extension of the Table 1 in our original paper. This table will be constantly updated.

Task Class Matching SeqLab MRC Seq2Seq Seq2ASeq (M)LM
TC Kim 2014;
Liu et al. 2016;
Devlin et al. 2019
Chai et al. 2020;
Yin et al. 2020;
Wang et al. 2021;
Yang et al. 2018 Brown et al. 2020;
Schick&Schutze 2021;
Schick&Schutze 2021;
Gao et al. 2021
NLI Devlin et al. 2019 Chen et al. 2017 McCann et al. 2018 Schick&Schutze 2021;
Schick&Schutze 2021;
Gao et al. 2021
NER Xia et al. 2019;
Fisher&Vlachos 2019;
Yu et al. 2020;
Fu et al. 2021
Ma&Hovy 2016;
Lample 2016
Li et al. 2020 Yan et al. 2021 Lample et al. 2016;
Dai et al. 2020
Ma et al. 2021
ABSA Wang et al. 2016 Sun et al. 2019 Mao et al. 2021
Chen et al. 2021
Yan et al. 2021;
Zhang et al. 2021
Li et al. 2021
RE Zeng et al. 2014 Levy et al. 2017;
Li et al. 2019;
Zhao et al. 2020
Han et al. 2021
Summ Zhong et al. 2020 Cheng&Lapata 2016 McCann et al. 2018 Aghajanyan et al. 2021
Parsing Rodríguez&Vilares 2018;
Strzyz et al. 2019;
Vilares&Rodríguez 2020;
Vacareanu et al. 2020;
Gan et al. 2021 Vinyals et al. 2015;
Li et al. 2018;
Rongali et al. 2020
Chen et al. 2014;
Dyer et al. 2015;
Choe&Charniak 2016

Trends

To intuitively depict the trend of paradigm shift in NLP, we also draw an interactive Sankey diagram, which is an extension of the Figure 2 in our original paper. Also, this diagram is constantly updated as the table above changed.

Contributing

This line of research is difficult to be comprehensively surveyed, so welcome any additions, modifications, and suggestions! Please feel free to submit pull request or directly contact me.

Citation

If you find this webpage or the paper helpful to your research, please cite our paper:

@article{sun2021paradigmshift,
  title={Paradigm Shift in Natural Language Processing}, 
  author={Tianxiang Sun and Xiangyang Liu and Xipeng Qiu and Xuanjing Huang},
  journal={arXiv preprint arXiv:2109.12575},
  year={2021}
}
You might also like...
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Official Stanford NLP Python Library for Many Human Languages
Official Stanford NLP Python Library for Many Human Languages

Stanza: A Python NLP Library for Many Human Languages The Stanford NLP Group's official Python NLP library. It contains support for running various ac

运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。
运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。

OlittleRer 运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。编程语言和工具包括Java、Python、Matlab、CPLEX、Gurobi、SCIP 等。 关注我们: 运筹小公众号 有问题可以直接在

NLP Core Library and Model Zoo based on PaddlePaddle 2.0
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

An open-source NLP research library, built on PyTorch.
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Comments
  • contribute to this repo

    contribute to this repo

    Hi, thanks for your greatly insightful survey. I had summarized related papers two months ago which may not be as comprehensive as yours. Sincerely hope it will contribute to this nice repo. For more info please visit NLP-ParadigmShiftingPapers.

    opened by SinclairCoder 2
  • Could you reorganize the paper list

    Could you reorganize the paper list

    hi, sun. Thanks for your insightful survey work for the paradigm shift in NLP. The papers in this repo only have the published year and authors' names. Could you reorganize the paper list to offer more details, e.g. the titles?

    opened by Doragd 2
Owner
Tianxiang Sun
@FudanNLP
Tianxiang Sun
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 2, 2023
NLP, before and after spaCy

textacy: NLP, before and after spaCy textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the hig

Chartbeat Labs Projects 2k Jan 4, 2023
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 7, 2023