Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Related tags

Deep Learning GRCN
Overview

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

This is our Pytorch implementation for the paper:

Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He and Tat-Seng Chua. Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback. In ACM MM`20, Seattle, United States, Oct. 12-16, 2020
Author: Dr. Yinwei Wei (weiyinwei at hotmail.com)

Introduction

In this work, we focus on adaptively refining the structure of interaction graph to discover and prune potential false-positive edges. Towards this end, we devise a new GCN-based recommendermodel, Graph-Refined Convolutional Network(GRCN), which adjusts the structure of interaction graph adaptively based on status of mode training, instead of remaining the fixed structure.

Environment Requirement

The code has been tested running under Python 3.5.2. The required packages are as follows:

  • Pytorch == 1.4.0
  • torch-cluster == 1.4.2
  • torch-geometric == 1.2.1
  • torch-scatter == 1.2.0
  • torch-sparse == 0.4.0
  • numpy == 1.16.0

Example to Run the Codes

The instruction of commands has been clearly stated in the codes.

  • Kwai dataset
    python main.py --l_r=0.0001 --weight_decay=0.1 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False --data_path=Kwai --has_a=False --has_t=False
  • Tiktok dataset
    python main.py --l_r=0.0001 --weight_decay=0.001 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False --data_path=Tiktok
  • Movielens dataset
    python main.py --l_r=0.0001 --weight_decay=0.0001 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False

Some important arguments:

  • weight_model It specifics the type of multimodal correlation integration. Here we provide three options:

    1. mean implements the mean integration without confidence vectors. Usage --weight_model 'mean'
    2. max implements the max integration without confidence vectors. Usage --weight_model 'max'
    3. confid (by default) implements the max integration with confidence vectors. Usage --weight_model 'confid'
  • fusion_mode It specifics the type of user and item representation in the prediction layer. Here we provide three options:

    1. concat (by default) implements the concatenation of multimodal features. Usage --fusion_mode 'concat'
    2. mean implements the mean pooling of multimodal features. Usage --fusion_mode 'max'
    3. id implements the representation with only the id embeddings. Usage --fusion_mode 'id'
  • is_pruning It specifics the type of pruning operation. Here we provide three options:

    1. Ture (by default) implements the hard pruning operations. Usage --is_pruning 'True'
    2. False implements the soft pruning operations. Usage --is_pruning 'False'
  • 'has_v', 'has_a', and 'has_t' indicate the modality used in the model.

Dataset

Please check MMGCN for the datasets: Kwai, Tiktok, and Movielens.

Due to the copyright, we could only provide some toy datasets for validation. If you need the complete ones, please contact the owners of the datasets.

#Interactions #Users #Items Visual Acoustic Textual
Movielens 1,239,508 55,485 5,986 2,048 128 100
Tiktok 726,065 36,656 76,085 128 128 128
Kwai 298,492 86,483 7,010 2,048 - -

-train.npy Train file. Each line is a user with her/his positive interactions with items: (userID and micro-video ID)
-val.npy Validation file. Each line is a user with her/his several positive interactions with items: (userID and micro-video ID)
-test.npy Test file. Each line is a user with her/his several positive interactions with items: (userID and micro-video ID)

You might also like...
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

Meta graph convolutional neural network-assisted resilient swarm communications
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

Comments
  • toy dataset格式不对?

    toy dataset格式不对?

    你好,我下载了MMGCN中提到的toy dataset,其中的user id和item id是分别编号的,但是我读代码时感觉代码的逻辑应该是item跟在user后面编号。 举个例子,我认为按照代码的逻辑编号应该是user: [1, 2, 3, 4, 5 ,..., n], item: [n+1, n+2, ...] 不知道是否我理解有误?

    opened by Jiangrijin 2
Owner
Thank you for your attention. If you have any questions, please email me.
null
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 1, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

null 9 Nov 22, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

null 12 Oct 28, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022