NaturalProofs: Mathematical Theorem Proving in Natural Language

Overview

NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language
Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, Kyunghyun Cho

This repo contains:

  • The NaturalProofs Dataset and the mathematical reference retrieval task data.
  • Preprocessing NaturalProofs and the retrieval task data.
  • Training and evaluation for mathematical reference retrieval.
  • Pretrained models for mathematical reference retrieval.

Please cite our work if you found the resources in this repository useful:

@article{welleck2021naturalproofs,
  title={NaturalProofs: Mathematical Theorem Proving in Natural Language},
  author={Welleck, Sean and Liu, Jiacheng and Le Bras, Ronan and Hajishirzi, Hannaneh and Choi, Yejin and Cho, Kyunghyun},
  year={2021}
}
Section Subsection
NaturalProofs Dataset Dataset
Preprocessing
Mathematical Reference Retrieval Dataset
Setup
Preprocessing
Pretrained models
Training
Evaluation

NaturalProofs Dataset

We provide the preprocessed NaturalProofs Dataset (JSON):

NaturalProofs Dataset
dataset.json [zenodo]

Preprocessing

To see the steps used to create the NaturalProofs dataset.json from raw ProofWiki data:

  1. Download the ProofWiki XML.
  2. Preprocess the data using notebooks/parse_proofwiki.ipynb.
  3. Form the data splits using notebooks/dataset_splits.ipynb.

Mathematical Reference Retrieval

Dataset

The Mathematical Reference Retrieval dataset contains (x, r, y) examples with theorem statements x, positive and negative references r, and 0/1 labels y, derived from NaturalProofs.

We provide the version used in the paper (bert-based-cased tokenizer, 200 randomly sampled negatives):

Reference Retrieval Dataset
bert-base-cased 200 negatives

Pretrained Models

Pretrained models
bert-base-cased
lstm

These models were trained with the "bert-base-cased 200 negatives" dataset provided above.

Setup

python setup.py develop

You can see the DockerFile for additional version info, etc.

Generating and tokenizing

To create your own version of the retrieval dataset, use python utils.py.

This step is not needed if you are using the reference retrieval dataset provided above.

Example:

python utils.py --filepath /path/to/dataset.json --output-path /path/to/out/ --model-type bert-base-cased
# => Writing dataset to /path/to/out/dataset_tokenized__bert-base-cased_200.pkl

Evaluation

Using the retrieval dataset and a model provided above, we compute the test evaluation metrics in the paper:

  1. Predict the rankings:
python naturalproofs/predict.py \
--method bert-base-cased \      # | lstm
--model-type bert-base-cased \  # | lstm
--datapath /path/to/dataset_tokenized__bert-base-cased_200.pkl \
--datapath-base /path/to/dataset.json \
--checkpoint-path /path/to/best.ckpt \
--output-dir /path/to/out/ \
--split test  # use valid during model development
  1. Compute metrics over the rankings:
python naturalproofs/analyze.py \
--method bert-base-cased \      # | lstm
--eval-path /path/to/out/eval.pkl \
--analysis-path /path/to/out/analysis.pkl

Training

python naturalproofs/model.py \
--datapath /path/to/dataset_tokenized__bert-base-cased_200.pkl \
--default-root-dir /path/to/out/

Classical Retrieval Baselines

TF-IDF example:

python naturalproofs/baselines.py \
--method tfidf \
--datapath /path/to/dataset_tokenized__bert-base-cased_200.pkl \
--datapath-base /path/to/dataset.json \
--savedir /path/to/out/

Then use analyze.py as shown above to compute metrics.

You might also like...
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Implementation of EMNLP 2017 Paper
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Owner
Sean Welleck
Sean Welleck
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano <https:

null 9.6k Dec 31, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano <https:

null 9.6k Jan 6, 2023
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano <https:

null 9.3k Feb 12, 2021
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 4, 2023
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 2, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

null 4 Jun 20, 2021
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection toolbox based on PyTorch.

yuxzho 94 Dec 25, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

null 3 Dec 2, 2022