============================================================================================================ `MILA will stop developing Theano <https://groups.google.com/d/msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ>`_. The PyMC developers are continuing Theano development in a `fork <https://github.com/pymc-devs/theano-pymc>`_. ============================================================================================================ To install the package, see this page: http://deeplearning.net/software/theano/install.html For the documentation, see the project website: http://deeplearning.net/software/theano/ Related Projects: https://github.com/Theano/Theano/wiki/Related-projects It is recommended that you look at the documentation on the website, as it will be more current than the documentation included with the package. In order to build the documentation yourself, you will need sphinx. Issue the following command: :: python ./doc/scripts/docgen.py Documentation is built into ``html/`` The PDF of the documentation can be found at ``html/theano.pdf`` ================ DIRECTORY LAYOUT ================ ``Theano`` (current directory) is the distribution directory. * ``Theano/theano`` contains the package * ``Theano/theano`` has several submodules: * ``gof`` + ``compile`` are the core * ``scalar`` depends upon core * ``tensor`` depends upon ``scalar`` * ``sparse`` depends upon ``tensor`` * ``sandbox`` can depend on everything else * ``Theano/examples`` are copies of the example found on the wiki * ``Theano/benchmark`` and ``Theano/examples`` are in the distribution, but not in the Python package * ``Theano/bin`` contains executable scripts that are copied to the bin folder when the Python package is installed * Tests are distributed and are part of the package, i.e. fall in the appropriate submodules * ``Theano/doc`` contains files and scripts used to generate the documentation * ``Theano/html`` is where the documentation will be generated
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.
Overview
Comments
-
Faster algorithms and gradients for GpuCorrMM
As a follow-up to #2023, this PR adds caffe's backward pass wrt. inputs to GpuCorrMM to implement
border_mode="full"
. It passes all the tests and it's about 2-4x faster than simulating a full convolution with a padded valid convolution. On the way, it cleans up the code and adds some more elaborate documentation.There are some caveats, though, all stemming from the fact that the implementation in caffe is meant as a backward pass for a valid correlation:
- With
border_mode="valid"
,GpuCorrMM
doesn't flip the kernels, but withborder_mode="full"
, it does. - With
border_mode="valid"
,subsampling
is for subsampling the output, but withborder_mode="full"
, it is for upsampling the input. - With
border_mode="valid"
,pad
is for padding the input, but withborder_mode="full"
, it is for cropping the output. - With
border_mode="full"
, it needs a different memory layout for the kernels.
Currently,
GpuCorrMM
directly wraps the underlying algorithm, andlocal_conv_gemm()
copes with the different peculiarities, because I wasn't sure whether theGpuCorrMM
Op should be inserting dimshuffles, kernel flips andgpu_contiguous
es on its own.Looking at the end result, although it's quite fast,
local_conv_gemm()
now basically undoes everything thatConvOp.grad()
does. It might be possible to write an optimizer that replaces the gradient of a valid convolution with a properly parameterizedGpuCorrMM
Op, instead of just replacing the full convolution Op that is part of the gradient (introducing redundant dimshuffles etc. on the way). This way we would leverage the caffe implementation better. The alternative would be to modify the CUDA code to perform a subsampled, padded, full correlation, as would be expected from a Gpu Correlation Op. This would be cleaner, but it would also mean a lot more work and we wouldn't profit as much from caffe's implementation for the case ofsubsampling != (1,1)
orpadding != (0,0)
(granted, this may be an uninteresting case in practice anyway). /edit: Another alternative would be splitting this into two Ops:GpuCorrMM
for valid correlation with padding and subsampling (the caffe forward pass), andGpuConvMM
for full convolution with upsampling and cropping (the caffe backward pass). This way it would be obvious how the operations differ, but the memory layout required for the second Op would still be unintuitive. Yet another alternative would be splitting it intoGpuCorrMM
andGpuCorrMM_gradInput
. This way it would be obvious how to useGpuCorrMM_gradInput
for computing the gradient ofGpuCorrMM
. We could even addGpuCorrMM_gradKernel
for the gradient wrt. weights; it seems caffe does things slightly different there as well. In both cases,GpuCorrMM
should get agrad()
method to define its gradient (so it can be used directly in a CNN to avoid kernel flipping and whatnot) andlocal_conv_gemm()
should still be able to replace anyGpuConv
instances with a gemm-based Op (so it can be used with existing CNN implementations). - With
-
caffe conv kernel for theano. tests work, but needs integration and some...
The caffe convolution works and passes test, however, code needs some cleaning, which are marked with TODO in comments. I created a new file, theano/sandbox/cuda/tests/test_conv_gemm.py that calls GpuConvMM.
TODO:
- [x] Add support for the full mode
Other possible follow up in gh-2015
NEWS.txt
- Add faster convolution (Arjun Jain, Frederic B.)
-
Baidu CTC wrapper
Fix and adapt an existing wrapper for Baidu CTC, then integrate it into tensor.nnet.
If the warp-ctc library is not on the compiler's default library path, one should set the
ctc.root
variable to point to a local copy of the aforementioned library.Before executing the CTC wrapepr, it is necessary to have the library libwarpctc.so on the LD path, so one also has to change the LD_LIBRARY_PATH environment variable to include the directory that contains the library.
For example:
export LD_LIBRARY_PATH=$CTC_LIB/build:$LD_LIBRARY_PATH THEANO_FLAGS=`floatX=float32,ctc.root=/home/user/warp-ctc' python theano/tensor/nnet/tests/test_ctc.py
Tasks:
- [x] Port CPU implementation (done using a COp)
- [x] Add tests and verification of results for CPU implementation (test done, more test cases required)
- [x] CPU to GPU optimization
- [x] Fix and port GPUOp to new backend
- [x] Add tests and verification of results for GPU implementation
- [x] Use OpenMP in CPU wrapper
- [x] Use CUDA stream in GPU wrapper
fix #3871
-
Fix theano.gradient.grad
Summary edit to reflect changes from code review on August 30 at 12PM EST.
-Updates theano.gradient.grad to correctly discriminate between inputs that are not connected to the cost and inputs that have zero gradient -Updates theano.gradient.grad to compute only those gradients requested by the user -Removes the UncomputableOp machinery that was used to hack NaNs into the old grad method -Introduces NullType, used to represent undefined or unimplemented gradients -Adds an optional connection_pattern method to the definition of the op contract. Currently this is only used by the shape op, and will probably only be needed extremely rarely in the future. -Adds more unit tests to make sure gradient.grad works correctly -Changes one tests to KnownFailureTest. The test asserted that a disconnected input error was raised when one shouldn't be. Later this test can be changed to assert that the grad method does the right thing, but we are still arguing on theano-dev about what the right thing is (0 or NaN) in this case. -Introduces the connection_pattern method and DisconnectedType
I recommend when reading this pull request you look at the final diff rather than each commit individually. I made several changes in the process of finishing this pull request so several lines in the early commits were later removed.
-
Abort Trap when importing Theano
I am getting
>>> import theano WARNING (theano.gof.compilelock): Overriding existing lock by dead process '83772' (I am process '83854') Fatal Python error: PyThreadState_Get: no current thread Abort trap: 6
which then kills Python. The Mac OS X bug report is
Process: python2.7 [91560] Path: /sw/*/python2.7 Identifier: python2.7 Version: ??? Code Type: X86-64 (Native) Parent Process: bash [41983] User ID: 503 Date/Time: 2013-04-03 13:18:48.483 -0600 OS Version: Mac OS X 10.8.3 (12D78) Report Version: 10 Interval Since Last Report: 276342 sec Crashes Since Last Report: 1 Per-App Crashes Since Last Report: 1 Anonymous UUID: 563FC21E-12C7-8C2A-E396-225C427EB6F4 Crashed Thread: 0 Dispatch queue: com.apple.main-thread Exception Type: EXC_CRASH (SIGABRT) Exception Codes: 0x0000000000000000, 0x0000000000000000 Application Specific Information: abort() called Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 libsystem_kernel.dylib 0x00007fff82c4fd46 __kill + 10 1 libsystem_c.dylib 0x00007fff8a54adf0 abort + 177 2 org.python.python 0x00000001078abeaa Py_FatalError + 49 3 org.python.python 0x00000001078aa370 PyThreadState_Get + 28 4 org.python.python 0x00000001078a5f16 Py_InitModule4_64 + 58 5 lazylinker_ext.so 0x0000000107852f6c initlazylinker_ext + 124 (mod.cpp:1004) 6 libpython2.7.dylib 0x0000000105208331 _PyImport_LoadDynamicModule + 177 7 libpython2.7.dylib 0x0000000105208051 import_submodule + 337 8 libpython2.7.dylib 0x0000000105207bdc load_next + 268 9 libpython2.7.dylib 0x0000000105205b12 PyImport_ImportModuleLevel + 1282 10 libpython2.7.dylib 0x00000001051e5fc8 builtin___import__ + 136 11 libpython2.7.dylib 0x00000001051ed4d7 PyEval_EvalFrameEx + 9911 12 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 13 libpython2.7.dylib 0x00000001051f23cd fast_function + 285 14 libpython2.7.dylib 0x00000001051ed578 PyEval_EvalFrameEx + 10072 15 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 16 libpython2.7.dylib 0x00000001051f23cd fast_function + 285 17 libpython2.7.dylib 0x00000001051ed578 PyEval_EvalFrameEx + 10072 18 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 19 libpython2.7.dylib 0x00000001051ea606 PyEval_EvalCode + 54 20 libpython2.7.dylib 0x0000000105204531 PyImport_ExecCodeModuleEx + 241 21 libpython2.7.dylib 0x00000001052075ef load_source_module + 1231 22 libpython2.7.dylib 0x0000000105208051 import_submodule + 337 23 libpython2.7.dylib 0x0000000105207bdc load_next + 268 24 libpython2.7.dylib 0x0000000105205acb PyImport_ImportModuleLevel + 1211 25 libpython2.7.dylib 0x00000001051e5fc8 builtin___import__ + 136 26 libpython2.7.dylib 0x000000010515d1b1 PyObject_Call + 97 27 libpython2.7.dylib 0x00000001051f1b78 PyEval_CallObjectWithKeywords + 168 28 libpython2.7.dylib 0x00000001051ef132 PyEval_EvalFrameEx + 17170 29 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 30 libpython2.7.dylib 0x00000001051ea606 PyEval_EvalCode + 54 31 libpython2.7.dylib 0x0000000105204531 PyImport_ExecCodeModuleEx + 241 32 libpython2.7.dylib 0x00000001052075ef load_source_module + 1231 33 libpython2.7.dylib 0x0000000105208051 import_submodule + 337 34 libpython2.7.dylib 0x0000000105207bdc load_next + 268 35 libpython2.7.dylib 0x0000000105205b12 PyImport_ImportModuleLevel + 1282 36 libpython2.7.dylib 0x00000001051e5fc8 builtin___import__ + 136 37 libpython2.7.dylib 0x000000010515d1b1 PyObject_Call + 97 38 libpython2.7.dylib 0x00000001051f1b78 PyEval_CallObjectWithKeywords + 168 39 libpython2.7.dylib 0x00000001051ef132 PyEval_EvalFrameEx + 17170 40 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 41 libpython2.7.dylib 0x00000001051ea606 PyEval_EvalCode + 54 42 libpython2.7.dylib 0x0000000105204531 PyImport_ExecCodeModuleEx + 241 43 libpython2.7.dylib 0x00000001052075ef load_source_module + 1231 44 libpython2.7.dylib 0x0000000105208051 import_submodule + 337 45 libpython2.7.dylib 0x0000000105207bdc load_next + 268 46 libpython2.7.dylib 0x0000000105205acb PyImport_ImportModuleLevel + 1211 47 libpython2.7.dylib 0x00000001051e5fc8 builtin___import__ + 136 48 libpython2.7.dylib 0x000000010515d1b1 PyObject_Call + 97 49 libpython2.7.dylib 0x00000001051f1b78 PyEval_CallObjectWithKeywords + 168 50 libpython2.7.dylib 0x00000001051ef132 PyEval_EvalFrameEx + 17170 51 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 52 libpython2.7.dylib 0x00000001051ea606 PyEval_EvalCode + 54 53 libpython2.7.dylib 0x0000000105204531 PyImport_ExecCodeModuleEx + 241 54 libpython2.7.dylib 0x00000001052075ef load_source_module + 1231 55 libpython2.7.dylib 0x0000000105208051 import_submodule + 337 56 libpython2.7.dylib 0x0000000105207bdc load_next + 268 57 libpython2.7.dylib 0x0000000105205acb PyImport_ImportModuleLevel + 1211 58 libpython2.7.dylib 0x00000001051e5fc8 builtin___import__ + 136 59 libpython2.7.dylib 0x000000010515d1b1 PyObject_Call + 97 60 libpython2.7.dylib 0x00000001051f1b78 PyEval_CallObjectWithKeywords + 168 61 libpython2.7.dylib 0x00000001051ef132 PyEval_EvalFrameEx + 17170 62 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 63 libpython2.7.dylib 0x00000001051ea606 PyEval_EvalCode + 54 64 libpython2.7.dylib 0x0000000105204531 PyImport_ExecCodeModuleEx + 241 65 libpython2.7.dylib 0x00000001052075ef load_source_module + 1231 66 libpython2.7.dylib 0x0000000105207823 load_package + 371 67 libpython2.7.dylib 0x0000000105208051 import_submodule + 337 68 libpython2.7.dylib 0x0000000105207bdc load_next + 268 69 libpython2.7.dylib 0x0000000105205acb PyImport_ImportModuleLevel + 1211 70 libpython2.7.dylib 0x00000001051e5fc8 builtin___import__ + 136 71 libpython2.7.dylib 0x000000010515d1b1 PyObject_Call + 97 72 libpython2.7.dylib 0x00000001051f1b78 PyEval_CallObjectWithKeywords + 168 73 libpython2.7.dylib 0x00000001051ef132 PyEval_EvalFrameEx + 17170 74 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 75 libpython2.7.dylib 0x00000001051ea606 PyEval_EvalCode + 54 76 libpython2.7.dylib 0x0000000105204531 PyImport_ExecCodeModuleEx + 241 77 libpython2.7.dylib 0x00000001052075ef load_source_module + 1231 78 libpython2.7.dylib 0x0000000105207823 load_package + 371 79 libpython2.7.dylib 0x0000000105208051 import_submodule + 337 80 libpython2.7.dylib 0x0000000105207bdc load_next + 268 81 libpython2.7.dylib 0x0000000105205acb PyImport_ImportModuleLevel + 1211 82 libpython2.7.dylib 0x00000001051e5fc8 builtin___import__ + 136 83 libpython2.7.dylib 0x00000001051ef91f PyEval_EvalFrameEx + 19199 84 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 85 libpython2.7.dylib 0x00000001051f23cd fast_function + 285 86 libpython2.7.dylib 0x00000001051ed578 PyEval_EvalFrameEx + 10072 87 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 88 libpython2.7.dylib 0x00000001051ea606 PyEval_EvalCode + 54 89 libpython2.7.dylib 0x0000000105204531 PyImport_ExecCodeModuleEx + 241 90 libpython2.7.dylib 0x00000001052075ef load_source_module + 1231 91 libpython2.7.dylib 0x0000000105208051 import_submodule + 337 92 libpython2.7.dylib 0x0000000105207bdc load_next + 268 93 libpython2.7.dylib 0x0000000105205b12 PyImport_ImportModuleLevel + 1282 94 libpython2.7.dylib 0x00000001051e5fc8 builtin___import__ + 136 95 libpython2.7.dylib 0x000000010515d1b1 PyObject_Call + 97 96 libpython2.7.dylib 0x00000001051f1b78 PyEval_CallObjectWithKeywords + 168 97 libpython2.7.dylib 0x00000001051ef132 PyEval_EvalFrameEx + 17170 98 libpython2.7.dylib 0x00000001051eadd6 PyEval_EvalCodeEx + 1990 99 libpython2.7.dylib 0x00000001051ea606 PyEval_EvalCode + 54 100 libpython2.7.dylib 0x000000010521184e PyRun_FileExFlags + 174 101 libpython2.7.dylib 0x00000001052113b9 PyRun_SimpleFileExFlags + 777 102 libpython2.7.dylib 0x0000000105223458 Py_Main + 2952 103 libdyld.dylib 0x00007fff8b7c67e1 start + 1 Thread 0 crashed with X86 Thread State (64-bit): rax: 0x0000000000000000 rbx: 0x00007fff5aaaf1f0 rcx: 0x00007fff5aaaf1d8 rdx: 0x0000000000000000 rdi: 0x00000000000165a8 rsi: 0x0000000000000006 rbp: 0x00007fff5aaaf200 rsp: 0x00007fff5aaaf1d8 r8: 0x00000000000003f5 r9: 0x0000000000000012 r10: 0x00007fff82c51342 r11: 0x0000000000000202 r12: 0x00000001052b6628 r13: 0x0000000107856696 r14: 0x00000000000003f5 r15: 0x0000000000000000 rip: 0x00007fff82c4fd46 rfl: 0x0000000000000202 cr2: 0x00007fff71683ff0 Logical CPU: 0 Binary Images: 0x105146000 - 0x105146ff7 +python (0) <B0C3F202-95BE-373A-A06F-79A7BCCFA9CD> /sw/*/python 0x105150000 - 0x10527cfff +libpython2.7.dylib (0) <8BF31D3A-0EF7-3CE6-88CF-205C1E98CEE9> /sw/*/libpython2.7.dylib 0x1054e2000 - 0x1054e5ff7 +strop.so (0) <4061DAEB-D152-3C4F-B0F0-0D0971670D8E> /sw/*/strop.so 0x105518000 - 0x10551bfff +operator.so (0) <68EB0E8E-A257-376F-B05D-BF282A26665D> /sw/*/operator.so 0x105522000 - 0x105525ff7 +_collections.so (0) <CC9C8E41-7B1F-3F68-82CA-B0DEB80B9655> /sw/*/_collections.so 0x10552b000 - 0x105531fff +itertools.so (0) <2E089EA6-6C94-3D50-8054-E3A5FB32DCFA> /sw/*/itertools.so 0x10553c000 - 0x10553cfff +_bisect.so (0) <F3B1FB0D-2B7E-31BD-93C7-401C545B845E> /sw/*/_bisect.so 0x10553f000 - 0x105540ff7 +_heapq.so (0) <802E2F80-8CC4-3BA6-A694-3639ED59031E> /sw/*/_heapq.so 0x105584000 - 0x105585ff7 +_functools.so (0) <7F3A69EC-39CF-3382-B5BD-3DAF499F16A6> /sw/*/_functools.so 0x105589000 - 0x1055a7ff7 +gmpy.so (0) <99BC0844-B754-3FC2-8FF1-65331B2B8E92> /sw/*/gmpy.so 0x1055bc000 - 0x10561cfe7 +libgmp.10.dylib (0) <F3227E5D-4540-34A1-80B6-619329D2E89C> /sw/*/libgmp.10.dylib 0x10566a000 - 0x10566eff7 +math.so (0) <8B3062E1-58CA-3489-A180-E3E10DF37FBB> /sw/*/math.so 0x1057f5000 - 0x1057fbfff +cmath.so (0) <B49DBD94-D22E-3659-B139-6D25A9BF3A94> /sw/*/cmath.so 0x105902000 - 0x105904ff7 +binascii.so (0) <DC52116F-7138-38CC-8F25-3AE0DDABD1F6> /sw/*/binascii.so 0x105908000 - 0x105909fff +_hashlib.so (0) <A33963FC-E21E-3E00-B76D-82B308918769> /sw/*/_hashlib.so 0x10590d000 - 0x105954fff +libssl.1.0.0.dylib (0) <D9297B83-4D02-37C6-B74D-02F84512ED81> /sw/*/libssl.1.0.0.dylib 0x10596e000 - 0x105aafff7 +libcrypto.1.0.0.dylib (0) <84357DD5-9E2C-3704-A000-20ECA154F9C8> /sw/*/libcrypto.1.0.0.dylib 0x105b20000 - 0x105b21fff +_random.so (0) <ABFFD6B6-471F-390A-B47A-2D253889383D> /sw/*/_random.so 0x105b65000 - 0x105b66fff +cStringIO.so (0) <9EB28A5B-14AF-3D6D-865C-301FF1FF2C40> /sw/*/cStringIO.so 0x105bab000 - 0x105bacfff +time.so (0) <9A82AD54-2086-368A-91F9-0B6A2BD58491> /sw/*/time.so 0x105bf1000 - 0x105bf2ff7 +fcntl.so (0) <A8C88B43-1524-35FC-8035-8259CE829AEF> /sw/*/fcntl.so 0x105bf5000 - 0x105bf8fff +select.so (0) <9F0F8D9F-FC2A-3552-8600-7FBDC0482995> /sw/*/select.so 0x105c3e000 - 0x105c42fff +_struct.so (0) <F11D0FF4-1C90-37E8-ABBD-6BDA68DE9066> /sw/*/_struct.so 0x105d09000 - 0x105d0bff7 +_locale.so (0) <55EAFDD4-9F76-3D88-AB92-2D0DFBD0C3AC> /sw/*/_locale.so 0x105d0f000 - 0x105d17ff7 +libintl.8.dylib (0) <069A2502-CB0F-3553-99B9-AB22811DA237> /sw/*/libintl.8.dylib 0x105d1c000 - 0x105e13fff +libiconv.2.dylib (0) <6EF717B2-1FBB-3B9D-9906-F1454F1E4A09> /sw/*/libiconv.2.dylib 0x105fb0000 - 0x105fb5ff7 +array.so (0) <B7833CF1-E7C9-3DF2-B7C3-B35CA7B69180> /sw/*/array.so 0x10607d000 - 0x106121ff7 +unicodedata.so (0) <D97A8759-3F21-333F-B85F-59996C46AD6E> /sw/*/unicodedata.so 0x106167000 - 0x106167fff +grp.so (0) <3BE20550-0CC0-3F69-96E7-36BB596A048E> /sw/*/grp.so 0x10652c000 - 0x10662dfff +multiarray.so (0) <8DB02CCD-4D3A-367F-A43C-EC1047577EDA> /sw/*/multiarray.so 0x1066cc000 - 0x1066d9ff7 +datetime.so (0) <58B0D29F-5F9C-32A9-9104-4B424FABD3AD> /sw/*/datetime.so 0x1066e5000 - 0x10672aff7 +umath.so (0) <5B45AC8C-DF16-30B0-8D36-0E21A73691E9> /sw/*/umath.so 0x106755000 - 0x106758ff7 +_dotblas.so (0) <BC88EBB9-AA24-35A9-8DC4-873E776412EB> /sw/*/_dotblas.so 0x10679c000 - 0x1067a9ff7 +cPickle.so (0) <62AF7173-8B8D-3038-A594-956283CE590D> /sw/*/cPickle.so 0x1067b1000 - 0x1067d1fff +scalarmath.so (0) <CF31FE24-C959-3CFE-AA1E-AA786882AFA9> /sw/*/scalarmath.so 0x106823000 - 0x106827fff +_compiled_base.so (0) <F14672BA-C7AB-3D0E-B402-C23C4B0FE147> /sw/*/_compiled_base.so 0x10686b000 - 0x10686eff7 +lapack_lite.so (0) <124E2A16-F629-3BFC-A6A9-AB44FF0277B5> /sw/*/lapack_lite.so 0x106872000 - 0x10687afff +fftpack_lite.so (0) <E257D46E-8C7F-32DE-90C5-83A1C4EB81EA> /sw/*/fftpack_lite.so 0x1069be000 - 0x1069f4ff7 +mtrand.so (0) <BDC39282-8891-3F74-9FC4-83E09A34F015> /sw/*/mtrand.so 0x106a42000 - 0x106a54fff +_ctypes.so (0) <91585B1A-9D67-3449-A203-C230084CD859> /sw/*/_ctypes.so 0x106aa5000 - 0x106aa7fff +zlib.so (0) <71B56A80-B0BE-32F8-9D6F-CD06AD3705DD> /sw/*/zlib.so 0x106aac000 - 0x106abdfff +_io.so (0) <29EFF145-4CEB-3357-8A78-66A7F896CC0B> /sw/*/_io.so 0x106b94000 - 0x106bc8ff7 +_path.so (0) <4E9362C3-7B88-347C-8560-399C48263EF2> /sw/*/_path.so 0x106ef4000 - 0x106f2bfff +_image.so (0) <2334D33A-A498-33CE-89C1-2EEB457757E9> /sw/*/_image.so 0x106fdc000 - 0x106ff6fff +_png.so (0) <8225CF38-5A3F-3836-959C-5D8586FAFC37> /sw/*/_png.so 0x107019000 - 0x10703cff7 +libpng15.15.dylib (26) <3E1A88E5-D8DF-3513-A98D-530E9DB64D62> /sw/*/libpng15.15.dylib 0x10708d000 - 0x107090ff7 +_csv.so (0) <0B7FD87A-6883-3D6C-AAA4-ABE8C98EB6D5> /sw/*/_csv.so 0x107156000 - 0x107199fff +ft2font.so (0) <566379A3-326B-3E1B-A9A0-74C66666D882> /sw/*/ft2font.so 0x1071c8000 - 0x107257ff7 +libfreetype.6.dylib (0) <3421996E-080E-3A7B-B2E4-30F7BC715A86> /sw/*/libfreetype.6.dylib 0x10728c000 - 0x10729aff7 +libbz2.1.dylib (1.0.6) <A5F1F093-E15B-3C4A-8801-E27588D867AD> /sw/*/libbz2.1.dylib 0x1072de000 - 0x1072e5fff +_socket.so (0) <DA20518B-96D8-3C32-BAD8-EFFECABDBA04> /sw/*/_socket.so 0x1072ef000 - 0x1072f3ff7 +_ssl.so (0) <08E1EECB-9AB7-3943-B49E-2AC765AB6454> /sw/*/_ssl.so 0x107339000 - 0x107339ff7 +_scproxy.so (0) <95E00EB4-5AA6-34B8-BDFB-C8C465324FC6> /sw/*/_scproxy.so 0x10737c000 - 0x10737fff7 +_cntr.so (0) <ACAB8850-E67E-3360-84FC-4F526AAFE815> /sw/*/_cntr.so 0x107503000 - 0x10750eff7 +_delaunay.so (0) <CF0DD057-2331-325B-9E01-6DF19BE8219F> /sw/*/_delaunay.so 0x107517000 - 0x10753ffff +_tri.so (0) <E4B5B789-DE27-3439-9538-9F61DDF425F9> /sw/*/_tri.so 0x10776d000 - 0x107778fff +_curses.so (0) <D6426A0B-4621-320C-AF4D-DBE23D89D69D> /sw/*/_curses.so 0x107783000 - 0x1077c1fff +libncursesw.5.dylib (5) <F92EB4DD-B504-34C8-801F-D1F25DFA7780> /sw/*/libncursesw.5.dylib 0x107851000 - 0x107856fff +lazylinker_ext.so (0) <8DAE1238-3A98-3C2A-BF4B-6052C5AF4B39> /Users/USER/*/lazylinker_ext.so 0x10785a000 - 0x107967fff org.python.python (2.7.2 - 2.7.2) <E7F3EED1-E55D-32AF-9649-77C814693F6A> /System/Library/Frameworks/Python.framework/Versions/2.7/Python 0x7fff64d46000 - 0x7fff64d7a93f dyld (210.2.3) <A40597AA-5529-3337-8C09-D8A014EB1578> /usr/lib/dyld 0x7fff8020c000 - 0x7fff8020cfff com.apple.CoreServices (57 - 57) <9DD44CB0-C644-35C3-8F57-0B41B3EC147D> /System/Library/Frameworks/CoreServices.framework/Versions/A/CoreServices 0x7fff8097f000 - 0x7fff8098eff7 libxar.1.dylib (105) <370ED355-E516-311E-BAFD-D80633A84BE1> /usr/lib/libxar.1.dylib 0x7fff810c3000 - 0x7fff810cefff libsystem_notify.dylib (98.5) <C49275CC-835A-3207-AFBA-8C01374927B6> /usr/lib/system/libsystem_notify.dylib 0x7fff818b5000 - 0x7fff819b2fff libsqlite3.dylib (138.1) <ADE9CB98-D77D-300C-A32A-556B7440769F> /usr/lib/libsqlite3.dylib 0x7fff81a13000 - 0x7fff81a19fff com.apple.DiskArbitration (2.5.2 - 2.5.2) <C713A35A-360E-36CE-AC0A-25C86A3F50CA> /System/Library/Frameworks/DiskArbitration.framework/Versions/A/DiskArbitration 0x7fff81b45000 - 0x7fff81bc7ff7 com.apple.Heimdal (3.0 - 2.0) <C94B0C6C-1320-35A1-8143-FE252E7B2A08> /System/Library/PrivateFrameworks/Heimdal.framework/Versions/A/Heimdal 0x7fff82220000 - 0x7fff82220fff libkeymgr.dylib (25) <CC9E3394-BE16-397F-926B-E579B60EE429> /usr/lib/system/libkeymgr.dylib 0x7fff827e6000 - 0x7fff8295bfff com.apple.CFNetwork (596.3.3 - 596.3.3) <3739DC8D-8610-3740-80EC-43E130779CB8> /System/Library/Frameworks/CFNetwork.framework/Versions/A/CFNetwork 0x7fff8295e000 - 0x7fff829a2fff libcups.2.dylib (327.3) <71E771A1-0489-3417-8A4A-56A2C930F80C> /usr/lib/libcups.2.dylib 0x7fff82a03000 - 0x7fff82a6bff7 libc++.1.dylib (65.1) <20E31B90-19B9-3C2A-A9EB-474E08F9FE05> /usr/lib/libc++.1.dylib 0x7fff82a6c000 - 0x7fff82aabff7 com.apple.QD (3.42 - 285) <8DF36FCA-C06B-30F4-A631-7BE2FF7E56D1> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/QD.framework/Versions/A/QD 0x7fff82b45000 - 0x7fff82b94ff7 libcorecrypto.dylib (106.2) <CE0C29A3-C420-339B-ADAA-52F4683233CC> /usr/lib/system/libcorecrypto.dylib 0x7fff82bef000 - 0x7fff82beffff libOpenScriptingUtil.dylib (148.3) <F8681222-0969-3B10-8BCE-C55A4B9C520C> /usr/lib/libOpenScriptingUtil.dylib 0x7fff82c3e000 - 0x7fff82c59ff7 libsystem_kernel.dylib (2050.22.13) <5A961E2A-CFB8-362B-BC43-122704AEB047> /usr/lib/system/libsystem_kernel.dylib 0x7fff82c5a000 - 0x7fff82c61fff com.apple.NetFS (5.0 - 4.0) <82E24B9A-7742-3DA3-9E99-ED267D98C05E> /System/Library/Frameworks/NetFS.framework/Versions/A/NetFS 0x7fff82d30000 - 0x7fff82e3bfff libFontParser.dylib (84.6) <96C42E49-79A6-3475-B5E4-6A782599A6DA> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/ATS.framework/Versions/A/Resources/libFontParser.dylib 0x7fff832d3000 - 0x7fff833eb92f libobjc.A.dylib (532.2) <90D31928-F48D-3E37-874F-220A51FD9E37> /usr/lib/libobjc.A.dylib 0x7fff83469000 - 0x7fff83653ff7 com.apple.CoreFoundation (6.8 - 744.18) <A60C3C9B-3764-3291-844C-C487ACF77C2C> /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation 0x7fff83654000 - 0x7fff837dafff libBLAS.dylib (1073.4) <C102C0F6-8CB6-3B49-BA6B-2EB61F0B2784> /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib 0x7fff837db000 - 0x7fff8385bff7 com.apple.ApplicationServices.ATS (332 - 341.1) <BD83B039-AB25-3E3E-9975-A67DAE66988B> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/ATS.framework/Versions/A/ATS 0x7fff8385c000 - 0x7fff83869ff7 com.apple.NetAuth (4.0 - 4.0) <F5BC7D7D-AF28-3C83-A674-DADA48FF7810> /System/Library/PrivateFrameworks/NetAuth.framework/Versions/A/NetAuth 0x7fff83958000 - 0x7fff83959ff7 libsystem_sandbox.dylib (220.2) <6838A6FD-8626-3356-BB4F-BB4787216207> /usr/lib/system/libsystem_sandbox.dylib 0x7fff8395a000 - 0x7fff8395bff7 libSystem.B.dylib (169.3) <365477AB-D641-389D-B8F4-A1FAE9657EEE> /usr/lib/libSystem.B.dylib 0x7fff84f17000 - 0x7fff84f48ff7 com.apple.DictionaryServices (1.2 - 184.4) <054F2D6F-9CFF-3EF1-9778-25C551B616C1> /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/DictionaryServices.framework/Versions/A/DictionaryServices 0x7fff8524c000 - 0x7fff85261ff7 libdispatch.dylib (228.23) <D26996BF-FC57-39EB-8829-F63585561E09> /usr/lib/system/libdispatch.dylib 0x7fff8548a000 - 0x7fff8555cff7 com.apple.CoreText (260.0 - 275.16) <5BFC1D67-6A6F-38BC-9D90-9C712684EDAC> /System/Library/Frameworks/CoreText.framework/Versions/A/CoreText 0x7fff8586d000 - 0x7fff85874fff libcopyfile.dylib (89) <876573D0-E907-3566-A108-577EAD1B6182> /usr/lib/system/libcopyfile.dylib 0x7fff85899000 - 0x7fff85c90fff libLAPACK.dylib (1073.4) <D632EC8B-2BA0-3853-800A-20DA00A1091C> /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libLAPACK.dylib 0x7fff85ca0000 - 0x7fff85caeff7 libsystem_network.dylib (77.10) <0D99F24E-56FE-380F-B81B-4A4C630EE587> /usr/lib/system/libsystem_network.dylib 0x7fff85d4b000 - 0x7fff85e08ff7 com.apple.ColorSync (4.8.0 - 4.8.0) <6CE333AE-EDDB-3768-9598-9DB38041DC55> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/ColorSync.framework/Versions/A/ColorSync 0x7fff85f20000 - 0x7fff85f21ff7 libdnsinfo.dylib (453.19) <14202FFB-C3CA-3FCC-94B0-14611BF8692D> /usr/lib/system/libdnsinfo.dylib 0x7fff85f79000 - 0x7fff85fe1fff libvDSP.dylib (380.6) <CD4C5EEB-9E63-30C4-8103-7A5EAEA0BE60> /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libvDSP.dylib 0x7fff867e8000 - 0x7fff86813fff libxslt.1.dylib (11.3) <441776B8-9130-3893-956F-39C85FFA644F> /usr/lib/libxslt.1.dylib 0x7fff86993000 - 0x7fff869aafff com.apple.CFOpenDirectory (10.8 - 151.10) <FFBBA538-00B5-334E-BA5B-C8AD6CDCDA14> /System/Library/Frameworks/OpenDirectory.framework/Versions/A/Frameworks/CFOpenDirectory.framework/Versions/A/CFOpenDirectory 0x7fff869d6000 - 0x7fff869defff liblaunch.dylib (442.26.2) <2F71CAF8-6524-329E-AC56-C506658B4C0C> /usr/lib/system/liblaunch.dylib 0x7fff86a11000 - 0x7fff86c11fff libicucore.A.dylib (491.11.2) <FD6282D8-DF3F-3842-8C2E-CF478D2B9669> /usr/lib/libicucore.A.dylib 0x7fff86c3b000 - 0x7fff86c49fff libcommonCrypto.dylib (60027) <BAAFE0C9-BB86-3CA7-88C0-E3CBA98DA06F> /usr/lib/system/libcommonCrypto.dylib 0x7fff86c4e000 - 0x7fff86ccffff com.apple.Metadata (10.7.0 - 707.5) <4140B1F6-7D73-33C7-B3F2-4DB349C31AE9> /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/Metadata.framework/Versions/A/Metadata 0x7fff86f2a000 - 0x7fff86f76ff7 libauto.dylib (185.1) <73CDC482-16E3-3FC7-9BB4-FBA2DA44DBC2> /usr/lib/libauto.dylib 0x7fff870fb000 - 0x7fff870fcfff libDiagnosticMessagesClient.dylib (8) <8548E0DC-0D2F-30B6-B045-FE8A038E76D8> /usr/lib/libDiagnosticMessagesClient.dylib 0x7fff87223000 - 0x7fff87223fff com.apple.Accelerate (1.8 - Accelerate 1.8) <6AD48543-0864-3D40-80CE-01F184F24B45> /System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate 0x7fff87351000 - 0x7fff873bffff com.apple.framework.IOKit (2.0.1 - 755.22.5) <1547DA6F-9793-30A2-8E92-7368DE84D46C> /System/Library/Frameworks/IOKit.framework/Versions/A/IOKit 0x7fff874bf000 - 0x7fff874c4fff libcache.dylib (57) <65187C6E-3FBF-3EB8-A1AA-389445E2984D> /usr/lib/system/libcache.dylib 0x7fff87502000 - 0x7fff87508ff7 libunwind.dylib (35.1) <21703D36-2DAB-3D8B-8442-EAAB23C060D3> /usr/lib/system/libunwind.dylib 0x7fff87561000 - 0x7fff8756efff libbz2.1.0.dylib (29) <CE9785E8-B535-3504-B392-82F0064D9AF2> /usr/lib/libbz2.1.0.dylib 0x7fff8758a000 - 0x7fff875b2fff libJPEG.dylib (849) <5C9052F6-D0B3-39CC-8302-468B43D694D5> /System/Library/Frameworks/ImageIO.framework/Versions/A/Resources/libJPEG.dylib 0x7fff875b3000 - 0x7fff875d2ff7 libresolv.9.dylib (51) <0882DC2D-A892-31FF-AD8C-0BB518C48B23> /usr/lib/libresolv.9.dylib 0x7fff87600000 - 0x7fff87622ff7 com.apple.Kerberos (2.0 - 1) <C49B8820-34ED-39D7-A407-A3E854153556> /System/Library/Frameworks/Kerberos.framework/Versions/A/Kerberos 0x7fff87630000 - 0x7fff87630fff com.apple.Accelerate.vecLib (3.8 - vecLib 3.8) <B5A18EE8-DF81-38DD-ACAF-7076B2A26225> /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/vecLib 0x7fff87631000 - 0x7fff87632fff liblangid.dylib (116) <864C409D-D56B-383E-9B44-A435A47F2346> /usr/lib/liblangid.dylib 0x7fff8791c000 - 0x7fff879c2ff7 com.apple.CoreServices.OSServices (557.6 - 557.6) <1BDB5456-0CE9-301C-99C1-8EFD0D2BFCCD> /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/OSServices.framework/Versions/A/OSServices 0x7fff87a6b000 - 0x7fff87a6bfff com.apple.ApplicationServices (45 - 45) <A3ABF20B-ED3A-32B5-830E-B37831A45A80> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/ApplicationServices 0x7fff87a6c000 - 0x7fff87a70ff7 com.apple.TCC (1.0 - 1) <F2F3B753-FC73-3543-8BBE-859FDBB4D6A6> /System/Library/PrivateFrameworks/TCC.framework/Versions/A/TCC 0x7fff87a71000 - 0x7fff87afeff7 com.apple.SearchKit (1.4.0 - 1.4.0) <C7F43889-F8BF-3CB9-AD66-11AEFCBCEDE7> /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/SearchKit.framework/Versions/A/SearchKit 0x7fff87b0a000 - 0x7fff87b5bff7 com.apple.SystemConfiguration (1.12.2 - 1.12.2) <A4341BBD-A330-3A57-8891-E9C1A286A72D> /System/Library/Frameworks/SystemConfiguration.framework/Versions/A/SystemConfiguration 0x7fff87d66000 - 0x7fff87d86fff libPng.dylib (849) <F4C23A55-F17B-3E4F-9E80-BC97F778BA49> /System/Library/Frameworks/ImageIO.framework/Versions/A/Resources/libPng.dylib 0x7fff87d87000 - 0x7fff87e38fff com.apple.LaunchServices (539.7 - 539.7) <DA7C602E-5E01-31B8-925D-B45360CA089F> /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/LaunchServices.framework/Versions/A/LaunchServices 0x7fff87ea6000 - 0x7fff87fa8fff libJP2.dylib (849) <4EEA33EB-AF9F-365D-A572-F7D11AD1C76F> /System/Library/Frameworks/ImageIO.framework/Versions/A/Resources/libJP2.dylib 0x7fff88147000 - 0x7fff884a4ff7 com.apple.Foundation (6.8 - 945.16) <89BD68FD-72C8-35C1-94C6-3A07F097C50D> /System/Library/Frameworks/Foundation.framework/Versions/C/Foundation 0x7fff88746000 - 0x7fff887b3ff7 com.apple.datadetectorscore (4.1 - 269.2) <4FD4A7CE-BB00-3AAB-B7AA-AE395D5400EC> /System/Library/PrivateFrameworks/DataDetectorsCore.framework/Versions/A/DataDetectorsCore 0x7fff887b7000 - 0x7fff887bbfff libGIF.dylib (849) <6A664B4D-0A88-33F7-9064-0CD159AB9CE9> /System/Library/Frameworks/ImageIO.framework/Versions/A/Resources/libGIF.dylib 0x7fff8886a000 - 0x7fff8887dff7 com.apple.LangAnalysis (1.7.0 - 1.7.0) <2F2694E9-A7BC-33C7-B4CF-8EC907DF0FEB> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/LangAnalysis.framework/Versions/A/LangAnalysis 0x7fff8887e000 - 0x7fff8888cff7 libkxld.dylib (2050.22.13) <4AAF0573-8632-3D06-BE32-C5675F77638D> /usr/lib/system/libkxld.dylib 0x7fff88954000 - 0x7fff88c25ff7 com.apple.security (7.0 - 55179.11) <73958084-5BBC-3597-A751-7370B0C247E5> /System/Library/Frameworks/Security.framework/Versions/A/Security 0x7fff88c26000 - 0x7fff88c27ff7 libremovefile.dylib (23.2) <6763BC8E-18B8-3AD9-8FFA-B43713A7264F> /usr/lib/system/libremovefile.dylib 0x7fff89046000 - 0x7fff8904bfff com.apple.OpenDirectory (10.8 - 151.10) <CF44120B-9B01-32DD-852E-C9C0E1243FC0> /System/Library/Frameworks/OpenDirectory.framework/Versions/A/OpenDirectory 0x7fff890f3000 - 0x7fff8912dff7 com.apple.GSS (3.0 - 2.0) <970CAE00-1437-3F4E-B677-0FDB3714C08C> /System/Library/Frameworks/GSS.framework/Versions/A/GSS 0x7fff89150000 - 0x7fff89152ff7 libunc.dylib (25) <92805328-CD36-34FF-9436-571AB0485072> /usr/lib/system/libunc.dylib 0x7fff89770000 - 0x7fff897cafff com.apple.print.framework.PrintCore (8.3 - 387.2) <5BA0CBED-4D80-386A-9646-F835C9805B71> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/PrintCore.framework/Versions/A/PrintCore 0x7fff897cb000 - 0x7fff897cefff libRadiance.dylib (849) <F7D9A0FD-1195-34CB-BFE5-79DAF3F40AC3> /System/Library/Frameworks/ImageIO.framework/Versions/A/Resources/libRadiance.dylib 0x7fff89806000 - 0x7fff899a1fef com.apple.vImage (6.0 - 6.0) <FAE13169-295A-33A5-8E6B-7C2CC1407FA7> /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vImage.framework/Versions/A/vImage 0x7fff89a83000 - 0x7fff89aa4ff7 libCRFSuite.dylib (33) <736ABE58-8DED-3289-A042-C25AF7AE5B23> /usr/lib/libCRFSuite.dylib 0x7fff89aa5000 - 0x7fff89dbcff7 com.apple.CoreServices.CarbonCore (1037.5 - 1037.5) <731D8F92-1C52-3613-BA01-EFEA54DADF41> /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/CarbonCore 0x7fff89dbd000 - 0x7fff89dc3fff libmacho.dylib (829) <BF332AD9-E89F-387E-92A4-6E1AB74BD4D9> /usr/lib/system/libmacho.dylib 0x7fff89e3b000 - 0x7fff89e9afff com.apple.AE (645.6 - 645.6) <44F403C1-660A-3543-AB9C-3902E02F936F> /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/AE.framework/Versions/A/AE 0x7fff89e9c000 - 0x7fff89ea0fff com.apple.IOSurface (86.0.4 - 86.0.4) <26F01CD4-B76B-37A3-989D-66E8140542B3> /System/Library/Frameworks/IOSurface.framework/Versions/A/IOSurface 0x7fff89ea1000 - 0x7fff89eb4ff7 libbsm.0.dylib (32) <F497D3CE-40D9-3551-84B4-3D5E39600737> /usr/lib/libbsm.0.dylib 0x7fff89eb5000 - 0x7fff89ed7ff7 libxpc.dylib (140.42) <BBE558BD-5E55-35E4-89ED-1AA6B056D05A> /usr/lib/system/libxpc.dylib 0x7fff89f26000 - 0x7fff89f2eff7 libsystem_dnssd.dylib (379.37) <616FC901-151E-38BF-B2C4-24A351C5FAAD> /usr/lib/system/libsystem_dnssd.dylib 0x7fff89f2f000 - 0x7fff89f3afff com.apple.CommonAuth (3.0 - 2.0) <7A953C1F-8B18-3E46-9BEA-26D9B5B7745D> /System/Library/PrivateFrameworks/CommonAuth.framework/Versions/A/CommonAuth 0x7fff89f3b000 - 0x7fff89f60ff7 libc++abi.dylib (26) <D86169F3-9F31-377A-9AF3-DB17142052E4> /usr/lib/libc++abi.dylib 0x7fff89f61000 - 0x7fff8a07afff com.apple.ImageIO.framework (3.2.0 - 849) <C52AED41-A7C2-300B-91FA-5AF73718D243> /System/Library/Frameworks/ImageIO.framework/Versions/A/ImageIO 0x7fff8a07b000 - 0x7fff8a07dfff libquarantine.dylib (52) <4BE2E642-A14F-340A-B482-5BD2AEFD9C24> /usr/lib/system/libquarantine.dylib 0x7fff8a083000 - 0x7fff8a088fff libcompiler_rt.dylib (30) <08F8731D-5961-39F1-AD00-4590321D24A9> /usr/lib/system/libcompiler_rt.dylib 0x7fff8a3ba000 - 0x7fff8a4affff libiconv.2.dylib (34) <FEE8B996-EB44-37FA-B96E-D379664DEFE1> /usr/lib/libiconv.2.dylib 0x7fff8a4f1000 - 0x7fff8a5bdff7 libsystem_c.dylib (825.26) <4C9EB006-FE1F-3F8F-8074-DFD94CF2CE7B> /usr/lib/system/libsystem_c.dylib 0x7fff8a5be000 - 0x7fff8a5d5fff com.apple.GenerationalStorage (1.1 - 132.3) <FD4A84B3-13A8-3C60-A59E-25A361447A17> /System/Library/PrivateFrameworks/GenerationalStorage.framework/Versions/A/GenerationalStorage 0x7fff8a615000 - 0x7fff8a643ff7 libsystem_m.dylib (3022.6) <B434BE5C-25AB-3EBD-BAA7-5304B34E3441> /usr/lib/system/libsystem_m.dylib 0x7fff8a92d000 - 0x7fff8a92ffff com.apple.TrustEvaluationAgent (2.0 - 23) <A97D348B-32BF-3E52-8DF2-59BFAD21E1A3> /System/Library/PrivateFrameworks/TrustEvaluationAgent.framework/Versions/A/TrustEvaluationAgent 0x7fff8a930000 - 0x7fff8a9cafff libvMisc.dylib (380.6) <714336EA-1C0E-3735-B31C-19DFDAAF6221> /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libvMisc.dylib 0x7fff8aa56000 - 0x7fff8aaacfff com.apple.HIServices (1.20 - 417) <A1129272-FEC8-350B-BA26-5A97F23C413D> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/HIServices.framework/Versions/A/HIServices 0x7fff8aaad000 - 0x7fff8ab16fff libstdc++.6.dylib (56) <EAA2B53E-EADE-39CF-A0EF-FB9D4940672A> /usr/lib/libstdc++.6.dylib 0x7fff8b698000 - 0x7fff8b6acfff com.apple.speech.synthesis.framework (4.1.12 - 4.1.12) <94EDF2AB-809C-3D15-BED5-7AD45B2A7C16> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/SpeechSynthesis.framework/Versions/A/SpeechSynthesis 0x7fff8b6ad000 - 0x7fff8b6b1fff libpam.2.dylib (20) <C8F45864-5B58-3237-87E1-2C258A1D73B8> /usr/lib/libpam.2.dylib 0x7fff8b752000 - 0x7fff8b753fff libsystem_blocks.dylib (59) <D92DCBC3-541C-37BD-AADE-ACC75A0C59C8> /usr/lib/system/libsystem_blocks.dylib 0x7fff8b762000 - 0x7fff8b774ff7 libz.1.dylib (43) <2A1551E8-A272-3DE5-B692-955974FE1416> /usr/lib/libz.1.dylib 0x7fff8b7c4000 - 0x7fff8b7c7ff7 libdyld.dylib (210.2.3) <F59367C9-C110-382B-A695-9035A6DD387E> /usr/lib/system/libdyld.dylib 0x7fff8b7c8000 - 0x7fff8b8c5ff7 libxml2.2.dylib (22.3) <47B09CB2-C636-3024-8B55-6040F7829B4C> /usr/lib/libxml2.2.dylib 0x7fff8b957000 - 0x7fff8b98dfff libsystem_info.dylib (406.17) <4FFCA242-7F04-365F-87A6-D4EFB89503C1> /usr/lib/system/libsystem_info.dylib 0x7fff8b9f6000 - 0x7fff8c3866ff com.apple.CoreGraphics (1.600.0 - 331.0.4) <4953961C-96DC-39D7-ADF5-B767F2A7E4E1> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/CoreGraphics.framework/Versions/A/CoreGraphics 0x7fff8c387000 - 0x7fff8c3dcff7 libTIFF.dylib (849) <C4D0E196-9319-319B-AF72-8B63FB5AF71B> /System/Library/Frameworks/ImageIO.framework/Versions/A/Resources/libTIFF.dylib 0x7fff8c3dd000 - 0x7fff8c42cff7 libFontRegistry.dylib (100) <2E03D7DA-9B8F-31BB-8FB5-3D3B6272127F> /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/ATS.framework/Versions/A/Resources/libFontRegistry.dylib External Modification Summary: Calls made by other processes targeting this process: task_for_pid: 0 thread_create: 0 thread_set_state: 0 Calls made by this process: task_for_pid: 0 thread_create: 0 thread_set_state: 0 Calls made by all processes on this machine: task_for_pid: 93253 thread_create: 3 thread_set_state: 0 VM Region Summary: ReadOnly portion of Libraries: Total=119.9M resident=50.4M(42%) swapped_out_or_unallocated=69.5M(58%) Writable regions: Total=61.2M written=13.9M(23%) resident=43.3M(71%) swapped_out=0K(0%) unallocated=17.9M(29%) REGION TYPE VIRTUAL =========== ======= MALLOC 52.3M MALLOC guard page 32K STACK GUARD 56.0M Stack 8192K VM_ALLOCATE 8K __DATA 5464K __LINKEDIT 55.6M __TEXT 64.4M __UNICODE 544K shared memory 12K =========== ======= TOTAL 242.2M Model: MacBookPro10,1, BootROM MBP101.00EE.B02, 4 processors, Intel Core i7, 2.3 GHz, 8 GB, SMC 2.3f35 Graphics: Intel HD Graphics 4000, Intel HD Graphics 4000, Built-In, 512 MB Graphics: NVIDIA GeForce GT 650M, NVIDIA GeForce GT 650M, PCIe, 1024 MB Memory Module: BANK 0/DIMM0, 4 GB, DDR3, 1600 MHz, 0x80AD, 0x484D54333531533642465238432D50422020 Memory Module: BANK 1/DIMM0, 4 GB, DDR3, 1600 MHz, 0x80AD, 0x484D54333531533642465238432D50422020 AirPort: spairport_wireless_card_type_airport_extreme (0x14E4, 0xEF), Broadcom BCM43xx 1.0 (5.106.98.100.16) Bluetooth: Version 4.1.3f3 11349, 2 service, 11 devices, 1 incoming serial ports Network Service: Wi-Fi, AirPort, en0 Serial ATA Device: APPLE SSD SM256E, 251 GB USB Device: hub_device, 0x8087 (Intel Corporation), 0x0024, 0x1a100000 / 2 USB Device: hub_device, 0x058f (Alcor Micro, Corp.), 0x6254, 0x1a120000 / 4 USB Device: Photosmart C4200 series, 0x03f0 (Hewlett Packard), 0x5c11, 0x1a121000 / 5 USB Device: FaceTime HD Camera (Built-in), apple_vendor_id, 0x8510, 0x1a110000 / 3 USB Device: hub_device, 0x8087 (Intel Corporation), 0x0024, 0x1d100000 / 2 USB Device: hub_device, 0x0424 (SMSC), 0x2512, 0x1d180000 / 3 USB Device: BRCM20702 Hub, 0x0a5c (Broadcom Corp.), 0x4500, 0x1d181000 / 5 USB Device: Bluetooth USB Host Controller, apple_vendor_id, 0x8286, 0x1d181300 / 8 USB Device: Apple Internal Keyboard / Trackpad, apple_vendor_id, 0x0262, 0x1d182000 / 4
This is with Fink Python, as you can see. I have
>>> import numpy >>> import scipy >>> numpy.__version__ '1.7.0' >>> scipy.__version__ '0.10.1'
-
Newly introduced vector-vector product bug
I'm experiencing what appears to be a serious bug. According to
git bisect
, the recent commit 14af439 is the culprit, merged in gh-1202.The following code now gives the wrong result on my machine. It should be 30.0, but after this commit results in 0.0.
Bug High Priorityimport numpy as np import theano import theano.tensor as tt v = tt.vector() f = theano.function([v], tt.dot(v, v)) testval = np.arange(5).astype(theano.config.floatX) print f(testval)
-
Shape check input
news:
- Compile less C modules.
- Add Theano flags check_inputs=True. If False, won't check node inputs in c code. It can be used to speed up compilation, reduce overhead (particularly for scalars) and reduce the number of generated C files.
Internal:
- Add optional Op.check_inputs attribute, if False, as flag check_inputs, but for this op only and it is always the case.
- Change Type.c_extract() and Type.c_declare() signature to have new check_inputs parameter.
-
Computation discrepancy between old and new GPU backends
I've tested the current master and the libgpuarray with my code on 2 different GPUs and for both backends.
- On a Quadro K5200 (Kepler, SM=3.5), both backends reproduced equivalent results.
- On a GTX980 (Maxwell, SM=5.2), gpuarray backend produces completely nonsense batch losses and the training diverges while old backend works without problem.
How can we debug this?
GPU - New back-end -
Unshared convolution
Related to #5620 .
Task list :
-
[x] C code for grad inputs and tests
-
[x] All tests need to pass.
-
[x] Change weight tensor dimension ordering instead of dimshuffle
-
[x] Integrate unshared tests with AbstractConv
-
[x] GPU code
-
-
New destroy handler
Issue #5976. Supervisor class is kept but we added a has_destroyers attribute to fgraph, but some tests regarding dumping the pickle failed because a new attribute was added to the fgraph. I changed it like this :
fgraph.destroyers = [get_destroyers_of, has_destroyers]
@nouiz what do you suggest?
fix https://github.com/Theano/Theano/issues/6230
-
RuntimeError: Failed to import pydot.
I just tried running this example http://deeplearning.net/software/theano/tutorial/printing_drawing.html for printing theano graphs from ipython, and I got this error. Anyone possibly know why? If I try accessing theano.printing.pydotprint, it has no trouble finding the attribute.
RuntimeError Traceback (most recent call last)
in () 70 theano.printing.pydotprint(predict, 71 outfile="pics/logreg_pydotprint_predic.png", ---> 72 var_with_name_simple=True) 73 # before compilation 74 theano.printing.pydotprint_variables(prediction, /usr/local/lib/python2.7/dist-packages/theano/printing.pyc in pydotprint(fct, outfile, compact, format, with_ids, high_contrast, cond_highlight, colorCodes, max_label_size, scan_graphs, var_with_name_simple, print_output_file, assert_nb_all_strings) 566 567 if not pydot_imported: --> 568 raise RuntimeError("Failed to import pydot. You must install pydot" 569 " for pydotprint
to work.") 570 return -
TypeError: ufunc 'sin' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
Anyone know what this error means and how I can fix it. Any other tips on the code would be great too, I'm a first year mechanical engineer at uni with very little coding experience.
-
theano error cannot convert 'cudnnConvolutionFwdAlgo_t*' to 'cudnnConvolutionFwdAlgoPerf_t
My installed packages are: CUDA 11.7, cudnn 8.5, theano 1.0.5 When I run the convolution network in the test file of Michael Nielsen's book on Deep Learning:
import network3 from network3 import Network, ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer training_data, validation_data, test_data = network3.load_data_shared() mini_batch_size = 10 net = Network([ ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),filter_shape=(20, 1, 5, 5), poolsize=(2, 2)),FullyConnectedLayer(n_in=20*12*12, n_out=100),SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) net.SGD(training_data, 60, mini_batch_size, 0.1, validation_data, test_data)
I bump into the following error:
Problem occurred during compilation with the command line below: /MYHOME/anaconda3/envs/behi/bin/x86_64-conda-linux-gnu-c++ -shared -g -O3 -fno-math-errno -Wno-unused-label -Wno-unused-variable -Wno-write-strings -Wl,-rpath,/usr/local/cuda-11.7/lib64 -DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION -m64 -fPIC -I/MYHOME/anaconda3/envs/behi/lib/python3.10/site-packages/pygpu -I/MYHOME/anaconda3/envs/behi/lib/python3.10/site-packages/numpy/core/include -I/MYHOME/anaconda3/envs/behi/include -I/usr/local/cuda-11.7/include -I/MYHOME/anaconda3/envs/behi/lib/python3.10/site-packages/theano/gpuarray/c_code -I/MYHOME/anaconda3/envs/behi/lib/python3.10/site-packages/numpy/core/include -I/MYHOME/anaconda3/envs/behi/include/python3.10 -I/MYHOME/anaconda3/envs/behi/lib/python3.10/site-packages/theano/gof/c_code -L/MYHOME/anaconda3/envs/behi/lib -L/usr/local/cuda-11.7/lib64 -L/MYHOME/anaconda3/envs/behi/lib -fvisibility=hidden -o /MYHOME/.theano/compiledir_Linux-5.15--generic-x86_64-with-glibc2.35-x86_64-3.10.4-64/tmpf3qvese9/mc1cd627e616bc8abc33fbfac83f3f655fef0d5f1dc7018ab317b39356ccb88a5.so /MYHOME/.theano/compiledir_Linux-5.15--generic-x86_64-with-glibc2.35-x86_64-3.10.4-64/tmpf3qvese9/mod.cpp -lgpuarray -lcudnn -lpython3.10dnn_fwd.c: In member function 'int {anonymous}::__struct_compiled_op_mc1cd627e616bc8abc33fbfac83f3f655fef0d5f1dc7018ab317b39356ccb88a5::conv_fwd_node_mc1cd627e616bc8abc33fbfac83f3f655fef0d5f1dc7018ab317b39356ccb88a5_0(PyGpuArrayObject*, PyGpuArrayObject*, PyGpuArrayObject*, cudnnConvolutionDescriptor_t, double, double, PyGpuArrayObject**, _Params_c1c8b4ff173698da406f46c90c8211df3674b0478655765dc1ebaa6eb2c3f1af_1348bc2b76f74f3ee4c82e363ec6eacd0522bb7d4a29dd246904b25b733edb4a*)': dnn_fwd.c:326:60: error: invalid conversion from 'size_t {aka long unsigned int}' to 'int*' [-fpermissive] dnn_fwd.c:326:60: error: cannot convert 'cudnnConvolutionFwdAlgo_t*' to 'cudnnConvolutionFwdAlgoPerf_t* {aka cudnnConvolutionFwdAlgoPerfStruct*}' for argument '8' to 'cudnnStatus_t cudnnGetConvolutionForwardAlgorithm_v7(cudnnHandle_t, cudnnTensorDescriptor_t, cudnnFilterDescriptor_t, cudnnConvolutionDescriptor_t, cudnnTensorDescriptor_t, int, int*, cudnnConvolutionFwdAlgoPerf_t*)'
I understand that incompatibility of packages should be the reason, however I was wondering if there is any way to resolve this by modify the module or dnn_fwd.c or the theano's config file without downgrading the packages?
-
unexpected behaviour in dimension expansion
When working with pymc3 (3.11.2) and theano (1.1.2) I found that dimension expansion of theano tensors shows some unexpected behaviour, compared to numpy style advanced indexing.
This code works:
import theano.tensor as T A = T.zeros((3,4)) B = A[None,:,:]
While leaving out the last axis indexer raises a ValueError:
import theano.tensor as T A = T.zeros((3,4)) B = A[None,:]
ValueError: ('You cannot drop a non-broadcastable dimension.', ([False, False], ['x', 0]))
In numpy you can usually leave out trailing ",:" axis indexers. In theano it seems they are necessary so the dimshuffle functions works correctly.
I don't know if this is fixed in any new version or if it is necessary to fix it at all. I just want to drop this somewhere on the internet for other people to find it, because that error annoyed me for a long time.
-
Error while using pymc3 and Theano-PyMC package
I am trying to use AutomatedRecommendationTool - A machine learning Automated Recommendation Tool for guiding synthetic biology. It uses a package named pymc3. But there are some issues regarding the compiler. Following is the Error:
Exception: ('Compilation failed (return status=1): C:\\Users\\vaibh\\AppData\\Local\\Theano\\compiledir_Windows-10-10.0.19044-SP0-AMD64_Family_23_Model_96_Stepping_1_AuthenticAMD-3.9.12-64\\tmpqepy79wz\\mod.cpp:1:0: sorry, unimplemented: 64-bit mode not compiled in\r. #include <Python.h>\r. \r. ', 'FunctionGraph(Elemwise{mul,no_inplace}(TensorConstant{3.141592653589793}, TensorConstant{0.01}))')
Following is the code cell that I am trying to run -
%%time if run_art: art = RecommendationEngine(df, **art_params) else: with open(os.path.join(art_params['output_directory'], 'art.pkl'), 'rb') as output: art = pickle.load(output)
I am using a jupyter notebook for executing the code. Following are the system specifications - Processor: AMD Ryzen 5 4600H with Radeon Graphics 3.00 GHz System type: 64-bit Operating System, x64-based processor Operating System: Windows 10 I have also installed a c++ compiler (MingW) and have added its bin path to system variables:
C:\Users\vaibh>g++ --version g++ (MinGW.org GCC-6.3.0-1) 6.3.0 Copyright (C) 2016 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Following are the packages that I have installed -
pipenv: 2022.5.2 depinfo: 1.7.0 python-libsbml(or just libsbml): 5.19.5 rfc3986: 2.0.0 h11: 0.13.0 rich: 12.4.4 pydantic: 1.9.1 diskcache: 5.4.0 importlib_resources: 5.7.1 Semver: 2.13.0 Pathvalidate: 2.5.0 pydoe: 0.3.8 tpot: 0.11.7 edd-utils: 0.0.12 pytorch: 1.11.0 mpi4py: 3.1.3 pymc3: 3.11.4 blas: 1.0
Anybody who has been able to solve this issue, please help.
Update: Theano-PyMC:1.1.2 was also installed as a dependency
-
configparser.NoSectionError: No section: 'blas' (Theano does not run probably on Python 3.9 and Numpy 1.22.2)
Theano does not run properly on Python 3.9 and Numpy 1.22.2 for me.
I get this error:
Traceback (most recent call last): File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/configparser.py", line 168, in fetch_val_for_key return theano_cfg.get(section, option) File "/usr/lib/python3.9/configparser.py", line 781, in get d = self._unify_values(section, vars) File "/usr/lib/python3.9/configparser.py", line 1152, in _unify_values raise NoSectionError(section) from None configparser.NoSectionError: No section: 'blas' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/configparser.py", line 327, in __get__ val_str = fetch_val_for_key(self.fullname, File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/configparser.py", line 172, in fetch_val_for_key raise KeyError(key) KeyError: 'blas.ldflags' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/nutzer/projects-2022-04-06/subtitle2go/punctuator2/punctuator.py", line 4, in <module> import models File "/home/nutzer/projects-2022-04-06/subtitle2go/punctuator2/models.py", line 4, in <module> import theano File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/__init__.py", line 124, in <module> from theano.scan_module import (scan, map, reduce, foldl, foldr, clone, File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/scan_module/__init__.py", line 41, in <module> from theano.scan_module import scan_opt File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/scan_module/scan_opt.py", line 60, in <module> from theano import tensor, scalar File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/tensor/__init__.py", line 17, in <module> from theano.tensor import blas File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/tensor/blas.py", line 155, in <module> from theano.tensor.blas_headers import blas_header_text File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/tensor/blas_headers.py", line 987, in <module> if not config.blas.ldflags: File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/configparser.py", line 332, in __get__ val_str = self.default() File "/home/nutzer/projects-2022-04-06/subtitle2go/subtitle2go_env/lib/python3.9/site-packages/theano/configdefaults.py", line 1284, in default_blas_ldflags blas_info = np.distutils.__config__.blas_opt_info AttributeError: module 'numpy.distutils.__config__' has no attribute 'blas_opt_info'
As the error says, there is no blas_opt_info in my numpy config, but replacing line 1284 with:
blas_info = np.distutils.__config__.blas_opt_info => blas_info = np.distutils.__config__.blas_ilp64_opt_info
works and then Theano works as expected! If someone else confirms this error I can do a PR where I'd use a try/except to catch the attribute error on line 1284, with another try to look for blas_ilp64_opt_info if blas_opt_info isn't available. That should work on older and newer numpy versions alike.
-
ImportError: cannot import name 'is_same_graph'
When I try to import theano (or pymc3) I get:
from theano.gof.toolbox import is_same_graph
ImportError: cannot import name 'is_same_graph'
Using python 3.6, Theano 1.0.5 and pymc3 3.10.0 installed via pip without errors.
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.
============================================================================================================ `MILA will stop developing Theano <https:
An implementation of chunked, compressed, N-dimensional arrays for Python.
Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)
OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"
Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca
The tool under this branch fork can be used to crack devices above A12 and up to A15. After cracking, you can also use SSH channel strong opening tool to open SSH channel and activate it with Demo or Shell script. The file can be extracted from my Github homepage, and the SSH channel opening tool can be extracted from Dr238 account.
Welcome to C0xy-A12-A15-Attack-Tool The tool under this branch fork can be used to crack devices above A12 and up to A15. After cracking, you can also
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.
EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent
Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository
Lightweight library to build and train neural networks in Theano
Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C
Lightweight library to build and train neural networks in Theano
Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.
Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in ???? Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in ???? Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data
Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.
SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section
ThunderSVM: A Fast SVM Library on GPUs and CPUs
What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss
nnDetection is a self-configuring framework for 3D (volumetric) medical object detection which can be applied to new data sets without manual intervention. It includes guides for 12 data sets that were used to develop and evaluate the performance of the proposed method.
What is nnDetection? Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of hi
MacroTools provides a library of tools for working with Julia code and expressions.
MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an
Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser.
Models Playground ??️ Upload a Preprocessed Dataset ?? Choose whether to perform Classification or Regression ?? Enter the Dependent Variable ?
An end-to-end machine learning library to directly optimize AUC loss
LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n