A transformer model to predict pathogenic mutations

Overview

MutFormer

MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model with an added adaptive vocabulary to protein context, for the purpose of predicting the effect of missense mutations on protein function.

For this project, a total of 5 models were trained:

Model Name Hidden Layers Hidden Size (and size of convolution filters) Intermediate Size Input length # of parameters Download link
Orig BERT small 8 768 3072 1024 ~58M https://drive.google.com/drive/folders/1dJwSPWOU8VVLwQbe8UlxSLyAiJqCWszn?usp=sharing
Orig BERT medium 10 770 3072 1024 ~72M https://drive.google.com/drive/folders/1--nJNAwCB5weLH8NclNYJsrYDx2DZUhj?usp=sharing
MutFormer small 8 768 3072 1024 ~62M https://drive.google.com/drive/folders/1-LXP5dpO071JYvbxRaG7hD9vbcp0aWmf?usp=sharing
MutFormer medium 10 770 3072 1024 ~76M https://drive.google.com/drive/folders/1-GWOe1uiosBxy5Y5T_3NkDbSrv9CXCwR?usp=sharing
MutFormer large (Same size transformer as BERT-base) 12 768 3072 1024 ~86M https://drive.google.com/drive/folders/1-59X7Wu7OMDB8ddnghT5wvthbmJ9vjo5?usp=sharing

Orig BERT small and Orig BERT medium use the original BERT model for comparison purposes, the MutFormer models the official models.

Best performing MutFormer model for funtional effect prediction:

https://drive.google.com/drive/folders/1tsC0lqzbx3wR_jOer9GuGjeJnnYL4RND?usp=sharing

To download a full prediction of all possible missense proteins in the humane proteome, we have included a file as an asset called "hg19_mutformer.zip" Alternatively, a google drive link: https://drive.google.com/file/d/1ObBEn-wcQwoebD7glx8bWiWILfzfnlIO/view?usp=sharing

To run MutFormer:

Pretraining:

Under the folder titled "MutFormer_pretraining," first open "MutFormer_pretraining_data generation_(with dynamic masking op).ipynb," and run through the code segments (if using colab, runtime options: Hardware Accelerator-None, Runtime shape-Standard), selecting the desired options along the way, to generate eval and test data, as well as begin the constant training data generation with dynamic masking.

Once the data generation has begun, open "MutFormer_run_pretraining.ipynb," and in a different runtime, run the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-High RAM if available, Standard otherwise) to start the training.

Finally, open "MutFormer_run_pretraining_eval.ipynb" and run all the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-Standard) in another runtime to begin the parallel evaluation operation.

You can make multiple copies of the data generation and run_pretraining scripts to train multiple models at a time. The evaluation script is able to handle evaluating multiple models at once.

To view pretraining graphs or download the checkpoints from GCS, use the notebook titled “MutFormer_processing_and_viewing_pretraining_results.”

Finetuning

For finetuning, there is only one set of files for three modes, so at the top of each notebook there is an option to select the desired mode to use (MRPC for paired strategy, RE for single sequence strategy, and NER for pre residue strategy).

Under the folder titled "MutFormer_finetraining," first open "MutFormer_finetuning_data_generation.ipynb," and run through the code segments (if using colab, runtime options: Hardware Accelerator-None, Runtime shape-Standard), selecting the desired options along the way, to generate train,eval,and test data.

Once the data generation has finished, open "MutFormer_finetuning_benchmark.ipynb," and in a different runtime, run the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-High RAM if available, Standard otherwise). There are three different options to use: either training multiple models on different sequence lengths, training just one model on multiple sequence lengths with different batch sizes, or training just one single model with specified sequence lengths and specified batch sizes. There are also options for whether to run prediction or evaluation, and which dataset to use.

Finally, alongside running MutFormer_run_finetuning "MutFormer_finetuning_benchmark_eval.ipynb" and run all the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-Standard) in another runtime to begin the parallel evaluation operation.

To view finetuning graphs or plotting ROC curves for the predictions, use the notebook titled “MutFormer_processing_and_viewing_finetuning_pathogenic_variant_classification_(2_class)_results.ipynb.”

Model top performances for Pathogenicity Prediction:

Model Name Receiver Operator Characteristic Area Under Curve (ROC AUC)
Orig BERT small 0.845
Orig BERT medium 0.876
MutFormer small 0.931
MutFormer medium 0.932
MutFormer large 0.933

Input Data format guidelines:

General format:

Each residue in each sequence should be separated by a space, and to denote the actual start and finish of each entire sequence, a "B" should be placed at the start of each sequence and a "J" at the end of the sequence prior to trimming/splitting.

for pretraining, datasets should be split into "train.txt", "eval.txt", and "test.txt" for finetuning, datasets should be split into "train.tsv", "dev.tsv", and "test.tsv"

During finetuning, whenever splitting was required, we placed the mutation at the most center point possible, and the rest was trimmed off.

Pretraining:

We have included our pretraining data in this repository as an asset, called "pretraining_data.zip" Alternatively, a google drive link: https://drive.google.com/drive/folders/1QlTx0iOS8aVKnD0fegkG5JOY6WGH9u_S?usp=sharing

The format should be a txt with each line containing one sequence. Each sequence should be trimmed/split to a maximum of a fixed length (in our case we used 1024 amino acids).

Example file:

B M E T A V I G V V V V L F V V T V A I T C V L C C F S C D S R A Q D P Q G G P G J
B M V S S Y L V H H G Y C A T A T A F A R M T E T P I Q E E Q A S I K N R Q K I Q K 
L V L E G R V G E A I E T T Q R F Y P G L L E H N P N L L F M L K C R Q F V E M V N 
G T D S E V R S L S S R S P K S Q D S Y P G S P S L S F A R V D D Y L H J

Finetuning

Single Sequence Classification (RE)

The format should be a tsv file with each line containing (tab delimited):

  1. mutated protein sequence
  2. label (1 for pathogenic and 0 for benign).

Example file:

V R K T T S P E G E V V P L H Q V D I P M E N G V G G N S I F L V A P L I I Y H V I D A N S P L Y D L A P S D L H H H Q D L    0
P S I P T D I S T L P T R T H I I S S S P S I Q S T E T S S L V V T T S P T M S T V R M T L R I T E N T P I S S F S T S I V    0
G Q F L L P L T Q E A C C V G L E A G I N P T D H L I T A Y R A Q G F T F T R G L S V R E I L A E L T G R K G G C A K G K G    1
P A G L G S A R E T Q A Q A C P Q E G T E A H G A R L G P S I E D K G S G D P F G R Q R L K A E E M D T E D R P E A S G V D    0

Per Residue Classification (NER)

The format should be a tsv file with each line containing (tab delimited):

  1. mutated protein sequence
  2. per residue labels
  3. mutation position (index; if the 5th residue is mutated the mutation position would be 4) ("P" for pathogenic and "B" for benign).

The per residue labels should be the same length as the mutated protein sequence. Every residue is labelled as "B" unless it was a mutation site, in which case it was labelled either "B" or "P." The loss is calculated on only the mutation site.

Example file:

F R E F A F I D M P D A A H G I S S Q D G P L S V L K Q A T    B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B    16
A T D L D A E E E V V A G E F G S R S S Q A S R R F G T M S    B B B B B B B B B B B B B B B P B B B B B B B B B B B B B B    16
G K K G D V W R L G L L L L S L S Q G Q E C G E Y P V T I P    B B B B B B B B B B B B B B B P B B B B B B B B B B B B B B    16
E M C Q K L K F F K D T E I A K I K M E A K K K Y E K E L T    B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B    16

Paired Sequence Classification (MRPC)

The format should be a tsv file with each line containing (tab delimited):

  1. label (1 for pathogenic and 0 for benign)
  2. comment/placeholder column
  3. another comment/placeholder column
  4. reference sequence
  5. mutated sequence

Example file:

1    asdf    asdf    D W A Y A A S K E S H A T L V F H N L L G E I D Q Q Y S R F    D W A Y A A S K E S H A T L V F Y N L L G E I D Q Q Y S R F
0    asdf    asdf    S A V P P F S C G V I S T L R S R E E G A V D K S Y C T L L    S A V P P F S C G V I S T L R S W E E G A V D K S Y C T L L
1    asdf    asdf    L L D S S L D P E P T Q S K L V R L E P L T E A E A S E A T    L L D S S L D P E P T Q S K L V H L E P L T E A E A S E A T
0    asdf    asdf    L A E D E A F Q R R R L E E Q A A Q H K A D I E E R L A Q L    L A E D E A F Q R R R L E E Q A T Q H K A D I E E R L A Q L

Citation

If you use MutFormer, please cite the arXiv paper:

Jiang, T., Fang, L. & Wang, K. MutFormer: A context-dependent transformer-based model to predict pathogenic missense mutations. Preprint at https://arxiv.org/abs/2110.14746 (2021).

Bibtex format:

@article{jiang2021mutformer,
    title={MutFormer: A context-dependent transformer-based model to predict pathogenic missense mutations}, 
    author={Theodore Jiang and Li Fang and Kai Wang},
    journal={arXiv preprint arXiv:2110.14746},
    year={2021}
}
You might also like...
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. The implementation of
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

Unofficial implementation of
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

Releases(v1.0.0)
Owner
Wang Genomics Lab
We develop software tools for genome analysis
Wang Genomics Lab
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

null 2 Jul 25, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

null 1 Oct 27, 2021
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Nafis Ahmed 1 Dec 28, 2021
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

null 1 Jan 6, 2022
Özlem Taşkın 0 Feb 23, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 8, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022