Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Related tags

Deep Learning RISDA
Overview

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Prerequisite

  • PyTorch >= 1.2.0
  • Python3
  • torchvision
  • argparse
  • numpy

Dataset

  • Imbalanced CIFAR. The original data will be downloaded and converted by imbalancec_cifar.py
  • Imbalanced ImageNet
  • The paper also reports results on iNaturalist 2018(https://github.com/visipedia/inat_comp).

CIFAR

CIFAR-LT-100,long-tailed imabalance ratio of 200
python RISDA.py --gpu 3 --lr 0.1 --alpha 0.5 --beta 1 --imb_factor 0.005 --dataset cifar100 --num_classes 100 --save_name simple --idx cifar_im200
CIFAR-LT-100,long-tailed imabalance ratio of 100
python RISDA.py --gpu 3 --lr 0.1 --alpha 0.5 --beta 0.75 --imb_factor 0.01 --dataset cifar100 --num_classes 100 --save_name simple --idx cifar_im100

More details will be uploaded soon.

Acknowledgements

Some codes in this project are adapted from MetaSAug and ISDA. We thank them for their excellent projects.

Citation

If you find this code useful for your research, please cite our paper.

You might also like...
Pytorch implementation for
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Pytorch implementation for
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Improving Calibration for Long-Tailed Recognition (CVPR2021)
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

A Simple Long-Tailed Rocognition Baseline via Vision-Language Model
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

Code for EMNLP 2021 main conference paper
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

Comments
  • Accurate Rate or Error Rate?

    Accurate Rate or Error Rate?

    I download code in your repository and read it carefully and thoroughly.

    I notice that the code keeps the manual random seed the same and sets cudnn.deterministic True. All of this makes sure the result is asthe same as you report in the paper. Specifically, when Imbalance Factor is 20, the result is 41.33.

    However, according to the code, 41.33 is calculated as accuracy rate, while in your paper, 41.33 is reported as error rate. The 2 metrics are opposite aspect of an algo, which makes me puzzled.

    Could you give an explanation?

    opened by DemonsHunter 1
Owner
null
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

null 52 Nov 21, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 11 Dec 1, 2021
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 7, 2023
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

Improving Calibration for Long-Tailed Recognition (CVPR2021)

Jia Research Lab 19 Apr 28, 2021