Code for LIGA-Stereo Detector, ICCV'21

Overview

LIGA-Stereo

Introduction

This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector, In ICCV'21, Xiaoyang Guo, Shaoshuai Shi, Xiaogang Wang and Hongsheng Li.

[project page] [paper] [code]

Framework

Overview

Installation

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 14.04 / 16.04)
  • Python 3.7
  • PyTorch 1.6.0
  • Torchvision 0.7.0
  • CUDA 9.2 / 10.1
  • spconv (commit f22dd9)

Installation Steps

a. Clone this repository.

git clone https://github.com/xy-guo/LIGA.git

b. Install the dependent libraries as follows:

  • Install the dependent python libraries:
pip install -r requirements.txt 
  • Install the SparseConv library, we use the implementation from [spconv].
git clone https://github.com/traveller59/spconv
git reset --hard f22dd9
git submodule update --recursive
python setup.py bdist_wheel
pip install ./dist/spconv-1.2.1-cp37-cp37m-linux_x86_64.whl
git clone https://github.com/xy-guo/mmdetection_kitti
python setup.py develop

c. Install this library by running the following command:

python setup.py develop

Getting Started

The dataset configs are located within configs/stereo/dataset_configs, and the model configs are located within configs/stereo for different datasets.

Dataset Preparation

Currently we only provide the dataloader of KITTI dataset.

  • Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes are provided by OpenPCDet [road plane], which are optional for training LiDAR models):
LIGA_PATH
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── configs
├── liga
├── tools
  • You can also choose to link your KITTI dataset path by
YOUR_KITTI_DATA_PATH=~/data/kitti_object
ln -s $YOUR_KITTI_DATA_PATH/training/ ./data/kitti/
ln -s $YOUR_KITTI_DATA_PATH/testing/ ./data/kitti/
  • Generate the data infos by running the following command:
python -m liga.datasets.kitti.kitti_dataset create_kitti_infos
python -m liga.datasets.kitti.kitti_dataset create_gt_database_only

Training & Testing

Test and evaluate the pretrained models

  • To test with multiple GPUs:
./scripts/dist_test_ckpt.sh ${NUM_GPUS} ./configs/stereo/kitti_models/liga.yaml ./ckpt/pretrained_liga.pth

Train a model

  • Train with multiple GPUs
./scripts/dist_train.sh ${NUM_GPUS} 'exp_name' ./configs/stereo/kitti_models/liga.yaml

Pretrained Models

Google Drive

Citation

@InProceedings{Guo_2021_ICCV,
    author = {Guo, Xiaoyang and Shi, Shaoshuai and Wang, Xiaogang and Li, Hongsheng},
    title = {LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month = {October},
    year = {2021}
}

Acknowledgements

Part of codes are migrated from OpenPCDet and DSGN.

Comments
  • 'stereo_kitti_dataset.py' has no function 'create_kitti_infos()' and 'create_gt_database_only'. How can I generate the data infos and gt_database?

    'stereo_kitti_dataset.py' has no function 'create_kitti_infos()' and 'create_gt_database_only'. How can I generate the data infos and gt_database?

    Hi, Xiaoyang! I'm trying to reimplement your awesome work.

    In 'Getting Started', you mentioned 'Generate the data infos by running the following command:'

    python -m liga.datasets.kitti.kitti_dataset create_kitti_infos
    python -m liga.datasets.kitti.kitti_dataset create_gt_database_only
    

    Unfortunately, these are only 'lidar_kitti_dataset' and 'stereo_kitti_dataset' in './liga/datasets/kitti/'. I successfully created kitti_infos and gt_database by running python -m liga.datasets.kitti.lidar_kitti_dataset create_kitti_infos and python -m liga.datasets.kitti.lidar_kitti_dataset create_gt_database_only.

    However, I don't know how to create kitti_infos for the stereo detector. When I ran python -m liga.datasets.kitti.stereo_kitti_dataset create_kitti_infos, I found that I can't get the .pkl files (kitti_infos) because there is no 'create_kitti_infos()' and 'create_gt_database_only' in stereo_kitti_dataset create_kitti_infos.py.

    More directly, if I want to train the whole LIGA-Stereo instead of just the modified SECOND, should I first create kitti_infos for the Stereo detector and then run ./scripts/dist_train.sh ${NUM_GPUS} 'exp_name' ./configs/stereo/kitti_models/liga.3d-and-bev.yaml?

    Look forward to your answer!

    opened by zjwzcx 3
  • pseudo lidar coordinates

    pseudo lidar coordinates

    Hi, thanks for your great work! I have a question about the coordinate system.

    I notice that in the stereo_kitti_dataset.py file, there is the introduction of a pseudo-lidar coordinate system.

    https://github.com/xy-guo/LIGA-Stereo/blob/aee3731a24a0ab1667e633e520cc89be2f135272/liga/datasets/kitti/stereo_kitti_dataset.py#L366

    I would like to know why this function is not rect_to_lidar, but rect_to_lidar_pseudo? Is there any difference in labelling between double and single purpose?

    opened by czy341181 3
  • No module named liga.datasets.kitti.kitti_dataset

    No module named liga.datasets.kitti.kitti_dataset

    Thanks for your great work~

    When I run the following commands: python -m liga.datasets.kitti.kitti_dataset create_kitti_infos python -m liga.datasets.kitti.kitti_dataset create_gt_database_only

    An error comes to me: No module named liga.datasets.kitti.kitti_dataset

    I find that there are only stereo_kitti_dataset.py and lidar_kitti_dataset.py in the path: liga/datasets/kitti/ Any suggestions would be deeply appreciated! Thanks again.

    opened by leeyegy 1
  • The implementation process and experimental results of using

    The implementation process and experimental results of using "soft targets".

    Hi Xiaoyang! Thanks for your great work. In the Introduction of LIGA-Stereo, you mentioned

    'Comparing with traditional knowledge distillation for recognition tasks, we did not take the final erroneous classification and regression predictions from the LiDAR model as “soft” targets, which we found benefits little for training stereo detection networks.'

    Could you please elaborate on your implementation process and experimental results?

    opened by zjwzcx 1
  • Wrong versions of both mmcv and mmdet

    Wrong versions of both mmcv and mmdet

    Hello,

    Thanks a lot for your wonderful work. I followed the instructions to install mmdet and mmcv. It returned the errors that "cannot import name 'MultiScaleDeformableAttention' from 'mmcv.cnn.bricks.transformer'". It seems that this module is not defined in mmcv.cnn.

    I tried other versions, no one can match all the requires of the test repository. Could you please share the versions of mmcv and mmdet that you used in your project.

    Thanks in advance. Hoping to hear from you soon.

    Best.

    opened by BitandPoly 0
  • subprocess.CalledProcessError: Command '' died with <Signals.SIGSEGV: 11>.

    subprocess.CalledProcessError: Command '' died with .

    Hi!Thanks for sharing your awesome code. But I have some problem when i running this code... My error massages:

    data/kitti/training/image_2/001773.png
    data/kitti/training/image_2/001816.png
    data/kitti/training/image_2/002829.png
    data/kitti/training/image_3/001773.png
    data/kitti/training/image_3/001816.png
    data/kitti/training/image_3/002829.png
    {'NAME': 'filter_truncated', 'AREA_RATIO_THRESH': None, 'AREA_2D_RATIO_THRESH': None, 'GT_TRUNCATED_THRESH': 0.98}
    filter truncated ratio: null 3d boxes [[ 2.99       -3.87       -0.66499996  4.43        1.84        1.75
      -0.2907964 ]] flipped False image idx 890 frame_id 001773 
    
    /home/users/gaoshiyu01/anaconda3/envs/liga5/lib/python3.7/site-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.  Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
      "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
    /home/users/gaoshiyu01/anaconda3/envs/liga5/lib/python3.7/site-packages/torch/optim/lr_scheduler.py:143: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose.
      warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)
    data/kitti/training/image_2/004052.png
    data/kitti/training/image_3/004052.png
    Traceback (most recent call last):
      File "/home/users/gaoshiyu01/anaconda3/envs/liga5/lib/python3.7/runpy.py", line 193, in _run_module_as_main
        "__main__", mod_spec)
      File "/home/users/gaoshiyu01/anaconda3/envs/liga5/lib/python3.7/runpy.py", line 85, in _run_code
        exec(code, run_globals)
      File "/home/users/gaoshiyu01/anaconda3/envs/liga5/lib/python3.7/site-packages/torch/distributed/launch.py", line 261, in <module>
        main()
      File "/home/users/gaoshiyu01/anaconda3/envs/liga5/lib/python3.7/site-packages/torch/distributed/launch.py", line 257, in main
        cmd=cmd)
    subprocess.CalledProcessError: Command '['/home/users/gaoshiyu01/anaconda3/envs/liga5/bin/python', '-u', 'tools/train.py', '--local_rank=1', '--launcher', 'pytorch', '--fix_random_seed', '--sync_bn', '--save_to_file', '--cfg_file', './configs/stereo/kitti_models/liga.3d-and-bev.yaml', '--exp_name', 'test1']' died with <Signals.SIGSEGV: 11>.
    

    Seems like a common bug caused by mmdet, so i followed the instruction from: mmdet bug report and checked my running/compiling libraries with nvcc, but everything seems alright, i still have no idea how to fix it, could you please provide more info, thanks a lot :)

    My environment:

    • nvcc --version: 10.1
    • nvidia-smi: 10.2
    • Cudatoolkit: 10.1
    • python: 3.7.13
    • pytorch: 1.6.0
    • spconv : 1.2.1
    • mmcv-full: 1.2.1
    • mmdet: 2.6.0
    • mmpycocotools : 12.0.3
    My conda list: ```

    Name Version Build Channel libgcc_mutex 0.1 main defaults _openmp_mutex 5.1 1_gnu defaults addict 2.4.0 pypi_0 pypi blas 1.0 mkl defaults ca-certificates 2022.07.19 h06a4308_0 defaults certifi 2022.6.15 py37h06a4308_0 defaults cudatoolkit 10.1.243 h6bb024c_0 defaults cycler 0.11.0 pypi_0 pypi cython 0.29.32 pypi_0 pypi easydict 1.9 pypi_0 pypi fire 0.4.0 pypi_0 pypi fonttools 4.37.2 pypi_0 pypi freetype 2.11.0 h70c0345_0 defaults future 0.18.2 pypi_0 pypi giflib 5.2.1 h7b6447c_0 defaults imageio 2.21.3 pypi_0 pypi importlib-metadata 4.12.0 pypi_0 pypi intel-openmp 2021.4.0 h06a4308_3561 defaults jpeg 9e h7f8727e_0 defaults kiwisolver 1.4.4 pypi_0 pypi lcms2 2.12 h3be6417_0 defaults ld_impl_linux-64 2.38 h1181459_1 defaults lerc 3.0 h295c915_0 defaults libdeflate 1.8 h7f8727e_5 defaults libffi 3.3 he6710b0_2 defaults libgcc-ng 11.2.0 h1234567_1 defaults libgomp 11.2.0 h1234567_1 defaults libpng 1.6.37 hbc83047_0 defaults libstdcxx-ng 11.2.0 h1234567_1 defaults libtiff 4.4.0 hecacb30_0 defaults libwebp 1.2.2 h55f646e_0 defaults libwebp-base 1.2.2 h7f8727e_0 defaults liga 0.1.0+0 dev_0 llvmlite 0.39.1 pypi_0 pypi lz4-c 1.9.3 h295c915_1 defaults matplotlib 3.5.3 pypi_0 pypi mkl 2021.4.0 h06a4308_640 defaults mkl-service 2.4.0 py37h7f8727e_0 defaults mkl_fft 1.3.1 py37hd3c417c_0 defaults mkl_random 1.2.2 py37h51133e4_0 defaults mmcv-full 1.2.1 pypi_0 pypi mmdet 2.6.0 dev_0 mmpycocotools 12.0.3 pypi_0 pypi ncurses 6.3 h5eee18b_3 defaults networkx 2.6.3 pypi_0 pypi ninja 1.10.2 h06a4308_5 defaults ninja-base 1.10.2 hd09550d_5 defaults numba 0.56.2 pypi_0 pypi numpy 1.21.5 py37h6c91a56_3 defaults numpy-base 1.21.5 py37ha15fc14_3 defaults opencv-python 4.6.0.66 pypi_0 pypi openssl 1.1.1q h7f8727e_0 defaults packaging 21.3 pypi_0 pypi pillow 9.2.0 py37hace64e9_1 defaults pip 22.1.2 py37h06a4308_0 defaults protobuf 3.20.1 pypi_0 pypi pyparsing 3.0.9 pypi_0 pypi python 3.7.13 h12debd9_0 defaults python-dateutil 2.8.2 pypi_0 pypi pytorch 1.6.0 py3.7_cuda10.1.243_cudnn7.6.3_0 pytorch pywavelets 1.3.0 pypi_0 pypi pyyaml 6.0 pypi_0 pypi readline 8.1.2 h7f8727e_1 defaults scikit-image 0.19.3 pypi_0 pypi scipy 1.7.3 pypi_0 pypi setuptools 59.8.0 pypi_0 pypi six 1.16.0 pyhd3eb1b0_1 defaults spconv 1.2.1 pypi_0 pypi sqlite 3.39.2 h5082296_0 defaults tensorboardx 2.5.1 pypi_0 pypi termcolor 2.0.1 pypi_0 pypi terminaltables 3.1.10 pypi_0 pypi tifffile 2021.11.2 pypi_0 pypi tk 8.6.12 h1ccaba5_0 defaults torchvision 0.7.0 py37_cu101 pytorch tqdm 4.64.1 pypi_0 pypi typing-extensions 4.3.0 pypi_0 pypi wheel 0.37.1 pyhd3eb1b0_0 defaults xz 5.2.5 h7f8727e_1 defaults yapf 0.32.0 pypi_0 pypi zipp 3.8.1 pypi_0 pypi zlib 1.2.12 h5eee18b_3 defaults zstd 1.5.2 ha4553b6_0 defaults

    </details>
    
    
    
    
    
    opened by SibylGao 0
  • scripts/dist_train.sh

    scripts/dist_train.sh

    Hello, Thanks for your excellent work !

    I have several problem about distributed training

    When i try to "CUDA_VISIBLE_DEVICE=0 python3 tools/train.py --cfg_file ${cfg} --batch_size 1" and "CUDA_VISIBLE_DEVICE=0 ./scripts/dist_train.sh 1 exp cfg_path", it is worked. but when i try to "python3 tools/train.py --cfg_file ${cfg} --batch_size 1" or "CUDA_VISIBLE_DEVICE=0,1,2,3 python3 tools/train.py --cfg_file ${cfg} --batch_size 1" or "CUDA_VISIBLE_DEVICE=0,1,2,3 ./scripts/dist_train.sh 4 exp cfg_path", That are not worked. How can i modify about the code for distributed training?

    opened by JangChangWon 2
  • Error: AttributeError: module 'matplotlib.cbook' has no attribute '_rename_parameter'

    Error: AttributeError: module 'matplotlib.cbook' has no attribute '_rename_parameter'

    Hello Xiaoyang,

    Thanks a lot for your great contribution! I am facing a problem when I run the following command:

    python -m liga.datasets.kitti.kitti_dataset create_kitti_infos python -m liga.datasets.kitti.kitti_dataset create_gt_database_only

    First I didn't find "kitti_dataset" in the ~/liga/dataset/kitti/kitti_dataset, but I have lidar_kitti_dataset.py and stereo_kitti_dataset.py instead. Then I run this command "python -m liga.datasets.kitti.kitti_dataset create_kitti_infos", it returned the error: "AttributeError: module 'matplotlib.cbook' has no attribute '_rename_parameter'. "

    Any ideas and suggestions will be helpful.

    Thanks in advance.

    opened by monstre0731 1
  • Batch size > 1 on single GPU

    Batch size > 1 on single GPU

    First, thank you for your great work and code.

    I saw in your code that you force the batch_size_per_gpu = 1. What's the reason for this config? If I want to train a larger batch size on a single GPU, which parts should I modify?

    Look forward to your answer. Thanks.

    opened by ngoductuanlhp 1
  • when I run these scripts,there're some questions

    when I run these scripts,there're some questions

    Thanks to your sharing,but when i first run following codes in my docker containers './scripts/dist_train.sh 1 dev configs/stereo/kitti_models/liga.yaml' or './scripts/dist_test_ckpt.sh 1 ./configs/stereo/kitti_models/liga.yaml ./ckpt/pretrained_liga.pth' nothing to show! If I cancle this processing by ctrl+c, run it again that will show '''bash Traceback (most recent call last): File "tools/train.py", line 211, in main() File "tools/train.py", line 73, in main args.tcp_port, args.local_rank, backend='nccl' File "/root/LIGA-Stereo-master/liga/utils/common_utils.py", line 181, in init_dist_pytorch world_size=num_gpus File "/root/miniconda3/envs/liga/lib/python3.7/site-packages/torch/distributed/distributed_c10d.py", line 422, in init_process_group store, rank, world_size = next(rendezvous_iterator) File "/root/miniconda3/envs/liga/lib/python3.7/site-packages/torch/distributed/rendezvous.py", line 126, in _tcp_rendezvous_handler store = TCPStore(result.hostname, result.port, world_size, start_daemon, timeout) RuntimeError: Address already in use Traceback (most recent call last): File "/root/miniconda3/envs/liga/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/root/miniconda3/envs/liga/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/root/miniconda3/envs/liga/lib/python3.7/site-packages/torch/distributed/launch.py", line 261, in main() File "/root/miniconda3/envs/liga/lib/python3.7/site-packages/torch/distributed/launch.py", line 257, in main cmd=cmd) subprocess.CalledProcessError: Command '['/root/miniconda3/envs/liga/bin/python', '-u', 'tools/train.py', '--local_rank=0', '--launcher', 'pytorch', '--fix_random_seed', '--sync_bn', '--save_to_file', '--cfg_file', 'configs/stereo/kitti_models/liga.yaml', '--exp_name', 'dev']' returned non-zero exit status 1. ''' How should I solve it?

    opened by Xie-PC 5
Owner
Xiaoyang Guo
Xiaoyang Guo
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 9, 2023
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 7, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

null 1 Jan 5, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

null 2 Jan 11, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

null 14 Dec 17, 2021
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

null 381 Dec 30, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

null 68 Dec 14, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 4, 2023
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

null 29 Oct 1, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

null 71 Nov 29, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 4, 2023